ﻻ يوجد ملخص باللغة العربية
The Gribov-Zwanziger framework accounting for the existence of Gribov copies is extended to N=1 Super Yang--Mills theories quantized in the Landau gauge. We show that the restriction of the domain of integration in the Euclidean functional integral to the first Gribov horizon can be implemented in a way to recover non-perturbative features of N=1 Super Yang--Mills theories, namely: the existence of the gluino condensate as well as the vanishing of the vacuum energy.
We construct a vector gauge invariant transverse field configuration $V^H$, consisting of the well-known superfield $V$ and of a Stueckelberg-like chiral superfield. The renormalizability of the Super Yang Mills action in the Landau gauge is analyzed
The renormalization of N=1 Super Yang-Mills theory is analysed in the Wess-Zumino gauge, employing the Landau condition. An all orders proof of the renormalizability of the theory is given by means of the Algebraic Renormalization procedure. Only thr
We study the Gribov problem in four-dimensional topological Yang-Mills theories following the Baulieu-Singer approach in the (anti-)self-dual Landau gauges. This is a gauge-fixed approach that allows to recover the topological spectrum, as first cons
We use fractional and wrapped branes to describe perturbative and non-perturbative properties of N=1 super Yang-Mills living on their world-volume. (Talk given at the 1st Nordstrom Symposium, Helsinki, August 2003.)
We study the multiplicity of BPS domain walls in N=1 super Yang-Mills theory, by passing to a weakly coupled Higgs phase through the addition of fundamental matter. The number of domain walls connecting two specified vacuum states is then determined