ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-singlet superconductivity with a full gap in locally non-centrosymmetric SrPtAs

111   0   0.0 ( 0 )
 نشر من قبل Kazuaki Matano
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report $^{195}$Pt-NMR and $^{75}$As-NQR measurements for the locally non-centrosymmetric superconductor SrPtAs where the As-Pt layer breaks inversion symmetry while globally the compound is centrosymmetric. The nuclear spin lattice relaxation rate $1/T_1$ shows a well-defined coherence peak below $T_c$ and decreases exponentially at low temperatures. The spin susceptibility measured by the Knight shift also decreases below $T_c$ down to $T<T_c/6$. These data together with the penetration depth obtained from the NMR spectra can be consistently explained by assuming a spin-singlet superconducting state with a full gap. Our results suggest that the spin-orbit coupling due to the local inversion-breaking is not large enough to bring about an exotic superconducting state, or the inter-layer hopping interaction is larger than the spin-orbit coupling.



قيم البحث

اقرأ أيضاً

We report detailed $^{75}$As-NQR investigations of the locally non-centrosymmetric superconductor SrPtAs. The spin-lattice relaxation studies prove weakly coupled multi-gap superconductivity. The Hebel-Slichter peak, a hallmark of conventional superc onductivity, is strongly suppressed, which points to an unconventional superconducting state. The observed behavior excludes a superconducting order parameter with line nodes and is consistent with proposed $f$-wave and chiral $d$-wave order parameters.
We report the magnetic and superconducting properties of locally noncentrosymmetric SrPtAs obtained by muon-spin-rotation/relaxation (muSR) measurements. Zero-field muSR reveals the occurrence of small spontaneous static magnetic fields with the onse t of superconductivity. This finding suggests that the superconducting state of SrPtAs breaks time-reversal symmetry. The superfluid density as determined by transverse field muSR is nearly flat approaching T = 0 K proving the absence of extended nodes in the gap function. By symmetry, several superconducting states supporting time-reversal symmetry breaking in SrPtAs are allowed. Out of these, a dominantly d + id (chiral d-wave) order parameter is most consistent with our experimental data.
We report a $mu$SR investigation of a non-centrosymmetric superconductor (LaNiC$_2$) in single crystal form. Compared to previous $mu$SR studies of non-centrosymmetric superconducting polycrystalline and powder samples, the unambiguous orientation of single crystals enables a simultaneous determination of the absolute value of the magnetic penetration depth and the vortex core size from measurements that probe the magnetic field distribution in the vortex state. The magnetic field dependence of these quantities unambiguously demonstrates the presence of two nodeless superconducting energy gaps. In addition, we detect weak internal magnetic fields in the superconducting phase, confirming earlier $mu$SR evidence for a time-reversal symmetry breaking superconducting state. Our results suggest that Cooper pairing in LaNiC$_2$ is characterized by the same interorbital equal-spin pairing model introduced to describe the pairing state in the centrosymmetric superconductor LaNiGa$_2$.
171 - J. Chen , J.L. Zhang , L.Jiao 2012
We study the superconducting properties of the non-centrosymmetric compound LaNiC$_2$ by measuring the London penetration depth $Delta lambda (T)$, the specific heat $C(T,B)$ and the electrical resistivity $rho (T,B)$. Both $Deltalambda (T)$ and the electronic specific heat $C_e(T)$ exhibit exponential behavior at low temperatures and can be described in terms of a phenomenological two-gap BCS model. The residual Sommerfeld coefficient in the superconducting state, $gamma_0(B)$, shows a fast increase at low fields and then an eventual saturation with increasing magnetic field. A pronounced upturn curvature is observed in the upper critical field $B_{c2}(T)$ near $T_{c}$. All the experimental observations support the existence of two-gap superconductivity in LaNiC$_2$.
150 - K. Matano , Z.A. Ren , X.L. Dong 2008
Since the discovery of high transition-temperature (Tc) superconductivity in copper oxides two decades ago, continuous efforts have been devoted to searching for similar phenomenon in other compounds. With the exception of MgB2 (Tc =39 K), however, T c is generally far lower than desired. Recently, breakthrough has been made in a new class of oxypnictide compounds. Following the initial discovery of superconductivity in LaO1-x FxFeAs (Tc =26 K), Tc onset has been raised to 55 K in ReO1-xFxFeAs (Re: Ce, Pr, Nd, Sm). Meanwhile, unravelling the nature of the energy associated with the formation of current-carrying pairs (Cooper pairs), referred to as the superconducting energy gap, is the first and vital step towards understanding why the superconductivity occurs at such high temperature and is also important for finding superconductors with still higher Tc. Here we show that, on the basis of the nuclear magnetic resonance (NMR) measurements in PrO0.89F0.11FeAs (Tc =45 K), the Cooper pair is in the spin-singlet state (two spins are anti-paralleled), with two energy gaps opening below Tc. The results strongly suggest the existence of nodes (zeros) in the gap. None of superconductors known to date has such unique gap features, although copper-oxides and MgB2 share part of them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا