ﻻ يوجد ملخص باللغة العربية
We report detailed $^{75}$As-NQR investigations of the locally non-centrosymmetric superconductor SrPtAs. The spin-lattice relaxation studies prove weakly coupled multi-gap superconductivity. The Hebel-Slichter peak, a hallmark of conventional superconductivity, is strongly suppressed, which points to an unconventional superconducting state. The observed behavior excludes a superconducting order parameter with line nodes and is consistent with proposed $f$-wave and chiral $d$-wave order parameters.
We report $^{195}$Pt-NMR and $^{75}$As-NQR measurements for the locally non-centrosymmetric superconductor SrPtAs where the As-Pt layer breaks inversion symmetry while globally the compound is centrosymmetric. The nuclear spin lattice relaxation rate
Nuclear quadrupole resonance measurements were performed on the heavy fermion superconductor Ce2PdIn8. Above the Kondo coherence temperature T_coh simeq 30K, the spin-lattice relaxation rate 1/T_1 is temperature independent, whereas at lower temperat
We report the magnetic and superconducting properties of locally noncentrosymmetric SrPtAs obtained by muon-spin-rotation/relaxation (muSR) measurements. Zero-field muSR reveals the occurrence of small spontaneous static magnetic fields with the onse
We report Sb-NQR results which evidence a heavy-fermion (HF) behavior and an unconventional superconducting (SC) property in the filled-skutterudite compound PrOs_4Sb_12 revealing a SC transition temperature T_c=1.85 K. The temperature (T) dependence
Recent $mu$SR measurements on SrPtAs revealed time-reversal-symmetry breaking with the onset of superconductivity [Biswas et al., Phys. Rev. B 87, 180503(R) (2013)], suggesting an unconventional superconducting state. We investigate this possibility