ترغب بنشر مسار تعليمي؟ اضغط هنا

Terminal valuations and the Nash problem

136   0   0.0 ( 0 )
 نشر من قبل Tommaso de Fernex
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let X be an algebraic variety of characteristic zero. Terminal valuations are defined in the sense of the minimal model program, as those valuations given by the exceptional divisors on a minimal model over X. We prove that every terminal valuation over X is in the image of the Nash map, and thus it corresponds to a maximal family of arcs through the singular locus of X. In dimension two, this result gives a new proof of the theorem of Fernandez de Bobadilla and Pe Pereira stating that, for surfaces, the Nash map is a bijection.



قيم البحث

اقرأ أيضاً

We consider the problem of approximating maximum Nash social welfare (NSW) while allocating a set of indivisible items to $n$ agents. The NSW is a popular objective that provides a balanced tradeoff between the often conflicting requirements of fairn ess and efficiency, defined as the weighted geometric mean of agents valuations. For the symmetric additive case of the problem, where agents have the same weight with additive valuations, the first constant-factor approximation algorithm was obtained in 2015. This led to a flurry of work obtaining constant-factor approximation algorithms for the symmetric case under mild generalizations of additive, and $O(n)$-approximation algorithms for more general valuations and for the asymmetric case. In this paper, we make significant progress towards both symmetric and asymmetric NSW problems. We present the first constant-factor approximation algorithm for the symmetric case under Rado valuations. Rado valuations form a general class of valuation functions that arise from maximum cost independent matching problems, including as special cases assignment (OXS) valuations and weighted matroid rank functions. Furthermore, our approach also gives the first constant-factor approximation algorithm for the asymmetric case under Rado valuations, provided that the maximum ratio between the weights is bounded by a constant.
This paper proposes some material towards a theory of general toric varieties without the assumption of normality. Their combinatorial description involves a fan to which is attached a set of semigroups subjected to gluing-up conditions. In particula r it contains a combinatorial construction of the blowing up of a sheaf of monomial ideals on a toric variety. In the second part it is shown that over an algebraically closed base field of zero characteristic the Semple-Nash modification of a general toric variety is isomorphic to the blowing up of the sheaf of logarithmic jacobian ideals and that in any characteristic this blowing-up is an isomorphism if and only if the toric variety is non singular. In the second part we prove that orders on the lattice of monomials (toric valuations) of maximal rank are uniformized by iterated Sempla-Nash modifications.
Suppose that (K, $ u$) is a valued field, f (z) $in$ K[z] is a unitary and irreducible polynomial and (L, $omega$) is an extension of valued fields, where L = K[z]/(f (z)). Further suppose that A is a local domain with quotient field K such that $ u$ has nonnegative value on A and positive value on its maximal ideal, and that f (z) is in A[z]. This paper is devoted to the problem of describing the structure of the associated graded ring gr $omega$ A[z]/(f (z)) of A[z]/(f (z)) for the filtration defined by $omega$ as an extension of the associated graded ring of A for the filtration defined by $ u$. In particular we give an algorithm which in many cases produces a finite set of elements of A[z]/(f (z)) whose images in gr $omega$ A[z]/(f (z)) generate it as a gr $ u$ A-algebra as well as the relations between them. We also work out the interactions of our method of computation with phenomena which complicate the study of ramification and local uniformization in positive characteristic , such as the non tameness and the defect of an extension. For valuations of rank one in a separable extension of valued fields (K, $ u$) $subset$ (L, $omega$) as above our algorithm produces a generating sequence in a local birational extension A1 of A dominated by $ u$ if and only if there is no defect. In this case, gr $omega$ A1[z]/(f (z)) is a finitely presented gr $ u$ A1-module. This is an improved version, thanks to a referees remarks.
In this thesis, I determine a bound on the defect of terminal Gorenstein quartic 3-folds. More generally, I study the defect of terminal Gorenstein Fano 3-folds of Picard rank 1 and genus at least 3. I state a geometric motivation of non Q-factoriality in the case of quartics.
We consider rational surfaces $Z$ defined by divisorial valuations $ u$ of Hirzebruch surfaces. We introduce the concepts of non-positivity and negativity at infinity for these valuations and prove that these concepts admit nice local and global equi valent conditions. In particular we prove that, when $ u$ is non-positive at infinity, the extremal rays of the cone of curves of $Z$ can be explicitly given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا