ترغب بنشر مسار تعليمي؟ اضغط هنا

Transverse momentum distribution and nuclear modification factor of forward neutral pion in proton--lead collisions at $sqrt{s_{NN}} = 5.02$TeV

120   0   0.0 ( 0 )
 نشر من قبل Gaku Mitsuka
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The transverse momentum ($p_text{T}$) distribution for inclusive neutral pions in the very forward rapidity region has been measured, with the Large Hadron Collider forward detector (LHCf), in proton--lead collisions at nucleon-nucleon center-of-mass energies of $sqrt{s_{NN}} = 5.02$TeV at the LHC. The $p_text{T}$ spectra obtained in the rapidity range $-11.0 < y_text{lab} < -8.9$ and $0 < p_text{T} < 0.6$GeV (in the detector reference frame) show a strong suppression of the production of neutral pions after taking into account ultra-peripheral collisions. This leads to a nuclear modification factor value, relative to the interpolated $p_text{T}$ spectra in proton-proton collisions at $sqrt{s} = 5.02$TeV, of about 0.1--0.4. This value is compared with the predictions of several hadronic interaction Monte Carlo simulations.



قيم البحث

اقرأ أيضاً

Dijet production has been measured in pPb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. A data sample corresponding to an integrated luminosity of 35 inverse nanobarns was collected using the Compact Muon Solenoid detector at the Large Hadron Collider. The dijet transverse momentum balance, azimuthal angle correlations, and pseudorapidity distributions are studied as a function of the transverse energy in the forward calorimeters (ETHFfour). For pPb collisions, the dijet transverse momentum ratio and the width of the distribution of dijet azimuthal angle difference are comparable to the same quantities obtained from a simulated pp reference and insensitive to ETHFfour. In contrast, the mean value of the dijet pseudorapidity is found to change monotonically with increasing ETHFfour, indicating a correlation between the energy emitted at large pseudorapidity and the longitudinal motion of the dijet frame. The pseudorapidity distribution of the dijet system in minimum bias pPb collisions is compared with next-to-leading-order perturbative QCD predictions obtained from both nucleon and nuclear parton distribution functions, and the data more closely match the latter.
In the continuation of our previous work, the transverse momentum ($p_T$) spectra and nuclear modification factor ($R_{AA}$) are derived using relaxation time approximation of Boltzmann Transport Equation (BTE). The initial $p_T$-distribution used to describe $p+p$ collisions has been studied with the pQCD inspired power-law distribution, the Hagedorns empirical formula and with the Tsallis non-extensive statistical distribution. The non-extensive Tsallis distribution is observed to describe the complete range of the transverse momentum spectra. The Boltzmann-Gibbs Blast Wave (BGBW) distribution is used as the equilibrium distribution in the present formalism, to describe the $p_T$-distribution and nuclear modification factor in nucleus-nucleus collisions. The experimental data for Pb+Pb collisions at $sqrt{s_{NN}}$ = 2.76 TeV at the Large Hadron Collider at CERN have been analyzed for pions, kaons, protons, $K^{*0}$ and $phi$. It is observed that the present formalism while explaining the transverse momentum spectra upto 5 GeV/c, explains the nuclear modification factor very well upto 8 GeV/c in $p_T$ for all these particles except for protons. $R_{AA}$ is found to be independent of the degree of non-extensivity, $q_{pp}$ after $p_T sim$ 8 GeV/c.
86 - Guannan Xie 2016
Heavy-flavor quarks are dominantly produced in initial hard scattering processes and experience the whole evolution of the system in heavy-ion collisions at RHIC energies. Thus they are suggested to be an excellent probe to the medium properties thro ugh their interaction with the medium. In this proceedings, we report our first measurement of $D^0$ production via topological reconstruction using STARs recently installed Heavy Flavor Tracker (HFT). We also report our new measurement of Nuclear Modification Factor ($R_{AA}$) of $D^0$ mesons in central Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV as a function of transverse momentum ($p_{T}$). New results confirm the strong suppression at high $p_{T}$ with a much improved precision, and show that the $R_{AA}$ at high $p_{T}$ are comparable with light hadrons ($pi$) and with D meson measurements at the LHC. Furthermore, several theoretical calculations are compared to our data, and with charm diffusion coefficient 2${pi}TD_{S}$ $sim$ 2-12 can reproduce both the $D^0$ $R_{AA}$ and $v_2$ data in Au+Au collisions at RHIC.
Two-particle angular correlations are studied in proton-lead collisions at a nucleon-nucleon centre-of-mass energy of $sqrt{s_{text{NN}}}=5$TeV, collected with the LHCb detector at the LHC. The analysis is based on data recorded in two beam configura tions, in which either the direction of the proton or that of the lead ion is analysed. The correlations are measured in the laboratory system as a function of relative pseudorapidity, $Deltaeta$, and relative azimuthal angle, $Deltaphi$, for events in different classes of event activity and for different bins of particle transverse momentum. In high-activity events a long-range correlation on the near side, $Deltaphi approx 0$, is observed in the pseudorapidity range $2.0<eta<4.9$. This measurement of long-range correlations on the near side in proton-lead collisions extends previous observations into the forward region up to $eta=4.9$. The correlation increases with growing event activity and is found to be more pronounced in the direction of the lead beam. However, the correlation in the direction of the lead and proton beams are found to be compatible when comparing events with similar absolute activity in the direction analysed.
58 - Zhaozhong Shi 2018
The study of charm production in heavy-ion collisions is considered an excellent probe for the properties of the hot and dense medium created in heavy-ion collisions. Measurements of D-meson nuclear modification can provide strong constraints into th e mechanisms of in-medium energy loss and charm flow in the medium. The measurement of $D^0$ elliptic flow in pPb collisions helps us understand the strength of charm quarks coupling to significantly reduced systems which demonstrate hydrodynamic properties. In this paper, the measurements of the $D^0$ nuclear modification factor in PbPb collisions at 5.02 TeV together with the new measurement of $D^0$ elliptic flow in high multiplicity pPb collisions at 5.02 TeV using the two-particle correlation method will be presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا