ﻻ يوجد ملخص باللغة العربية
In the continuation of our previous work, the transverse momentum ($p_T$) spectra and nuclear modification factor ($R_{AA}$) are derived using relaxation time approximation of Boltzmann Transport Equation (BTE). The initial $p_T$-distribution used to describe $p+p$ collisions has been studied with the pQCD inspired power-law distribution, the Hagedorns empirical formula and with the Tsallis non-extensive statistical distribution. The non-extensive Tsallis distribution is observed to describe the complete range of the transverse momentum spectra. The Boltzmann-Gibbs Blast Wave (BGBW) distribution is used as the equilibrium distribution in the present formalism, to describe the $p_T$-distribution and nuclear modification factor in nucleus-nucleus collisions. The experimental data for Pb+Pb collisions at $sqrt{s_{NN}}$ = 2.76 TeV at the Large Hadron Collider at CERN have been analyzed for pions, kaons, protons, $K^{*0}$ and $phi$. It is observed that the present formalism while explaining the transverse momentum spectra upto 5 GeV/c, explains the nuclear modification factor very well upto 8 GeV/c in $p_T$ for all these particles except for protons. $R_{AA}$ is found to be independent of the degree of non-extensivity, $q_{pp}$ after $p_T sim$ 8 GeV/c.
We predict the elliptic flow parameter v_2 in U+U collisions at sqrt{s_{NN}}=200 GeV and in Pb+Pb collisions at sqrt{s_{NN}} = 2.76 TeV using a hybrid model in which the evolution of the quark gluon plasma is described by ideal hydrodynamics with a s
We analyze the elliptic flow parameter v_2 in Pb+Pb collisions at sqrt{s_{NN}} = 2.76 TeV and in Au+Au collisions at sqrt{s_{NN}} =200 GeV using a hybrid model in which the evolution of the quark gluon plasma is described by ideal hydrodynamics with
A simple approach based on the separation of wounded nucleons in an A-A collision in two categories, those suffering single collisions - corona and the rest - core, estimated within a Glauber Monte-Carlo approach, explains the centrality dependence o
Elliptic flow of hadrons observed at relativistic heavy-ion collision experiments at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC), provides us an important signature of possible de-confinement transition from hadronic phase
Elliptic flow in heavy-ion collisions is an important signature of a possible de-confinement transition from hadronic phase to partonic phase. In the present work, we use non-extensive statistics, which has been used for transverse momentum ($p_{rm T