ﻻ يوجد ملخص باللغة العربية
Galactic encounters are usually marked by a substantial increase of synchrotron emission of the interacting galaxies compared to the typical emission from similar isolated galaxies. This is believed to be associated with an increase of the star formation rate and the associated turbulent magnetic fields. The regular magnetic field is usually believed to decrease. We consider a simple, however rather realistic, mean-field galactic dynamo model where the effects of small-scale generation are represented by random injections of magnetic field from star forming regions. We represent an encounter by the introduction of large-scale streaming velocities and by an increase in small-scale magnetic field injections. The latter describes the effect of an increase of the star formation rate caused by the encounter. We demonstrate that large-scale streaming, with associated deviations in the rotation curve, can result in an enhancement of the anisotropic turbulent (ordered) magnetic field strength, mainly along the azimuthal direction, leading to a significant temporary increase of the total magnetic energy during the encounter; the representation of an increase in star formation rate has an additional strong effect. In contrast to expectations, the large-scale (regular) magnetic field structure is not significantly destroyed by the encounter. It may be somewhat weakened for a relatively short period, and its direction after the encounter may be reversed. The encounter causes enhanced total and polarized emission without increase of the regular magnetic field strength. The increase of synchrotron emission caused by the large-scale streaming can be comparable to the effect of the increase of the star formation rate, depending on the choice of parameters.The effects of the encounter on the total magnetic field energy last only slightly longer than the duration of the encounter (ca. 1 Gyr).
We study the cosmic evolution of the magnetic fields of a large sample of spiral galaxies in a cosmologically representative volume by employing a semi-analytic galaxy formation model and numerical dynamo solver in tandem. We start by deriving time-
Magnetic fields on a range of scales play a large role in the ecosystems of galaxies, both in the galactic disk and in the extended layers of gas away from the plane. Observing magnetic field strength, structure and orientation is complex, and necess
Magnetic fields are observed beyond the peripheries of optically detected galactic discs, while numerical models of their origin and the typical magnitudes are still absent. Previously, studies of galactic dynamo have avoided considering the peripher
A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in cold dark matter cosmology. Estimates of the steady-state strength of the large-scale
We call a polynomial monogenic if a root $theta$ has the property that $mathbb{Z}[theta]$ is the full ring of integers in $mathbb{Q}(theta)$. Consider the two families of trinomials $x^n + ax + b$ and $x^n + cx^{n-1} + d$. For any $n>2$, we show that