ﻻ يوجد ملخص باللغة العربية
We review the methods of constructing confidence intervals that account for a priori information about one-sided constraints on the parameter being estimated. We show that the so-called method of sensitivity limit yields a correct solution of the problem. Derived are the solutions for the cases of a continuous distribution with non-negative estimated parameter and a discrete distribution, specifically a Poisson process with background. For both cases, the best upper limit is constructed that accounts for the a priori information. A table is provided with the confidence intervals for the parameter of Poisson distribution that correctly accounts for the information on the known value of the background along with the software for calculating the confidence intervals for any confidence levels and magnitudes of the background (the software is freely available for download via Internet).
The evaluation of the error to be attributed to cut efficiencies is a common question in the practice of experimental particle physics. Specifically, the need to evaluate the efficiency of the cuts for background removal, when they are tested in a si
In this paper, we consider a surrogate modeling approach using a data-driven nonparametric likelihood function constructed on a manifold on which the data lie (or to which they are close). The proposed method represents the likelihood function using
Introductory texts on statistics typically only cover the classical two sigma confidence interval for the mean value and do not describe methods to obtain confidence intervals for other estimators. The present technical report fills this gap by first
Off-policy evaluation (OPE) is the task of estimating the expected reward of a given policy based on offline data previously collected under different policies. Therefore, OPE is a key step in applying reinforcement learning to real-world domains suc
In 2011, a discrepancy between the values of the Planck constant measured by counting Si atoms and by comparing mechanical and electrical powers prompted a review, among others, of the measurement of the spacing of $^{28}$Si {220} lattice planes, eit