ﻻ يوجد ملخص باللغة العربية
We consider the continuous Fermat-Weber problem, where the customers are continuously (uniformly) distributed along the boundary of a convex polygon. We derive the closed-form expression for finding the average distance from a given point to the continuously distributed customers along the boundary. A Weiszfeld-type procedure is proposed for this model, which is shown to be linearly convergent. We also derive a closed-form formula to find the average distance for a given point to the entire convex polygon, assuming a uniform distribution. Since the function is smooth, convex, and explicitly given, the continuous version of the Fermat-Weber problem over a convex polygon can be solved easily by numerical algorithms.
Clustering has been one of the most basic and essential problems in unsupervised learning due to various applications in many critical fields. The recently proposed sum-of-nums (SON) model by Pelckmans et al. (2005), Lindsten et al. (2011) and Hockin
Given two sets of points in the plane, $P$ of $n$ terminals and $S$ of $m$ Steiner points, a Steiner tree of $P$ is a tree spanning all points of $P$ and some (or none or all) points of $S$. A Steiner tree with length of longest edge minimized is cal
Suppose an escaping player moves continuously at maximum speed 1 in the interior of a region, while a pursuing player moves continuously at maximum speed $r$ outside the region. For what $r$ can the first player escape the region, that is, reach the
The problem of vertex guarding a simple polygon was first studied by Subir K. Ghosh (1987), who presented a polynomial-time $O(log n)$-approximation algorithm for placing as few guards as possible at vertices of a simple $n$-gon $P$, such that every
Given two shapes $A$ and $B$ in the plane with Hausdorff distance $1$, is there a shape $S$ with Hausdorff distance $1/2$ to and from $A$ and $B$? The answer is always yes, and depending on convexity of $A$ and/or $B$, $S$ may be convex, connected, o