ﻻ يوجد ملخص باللغة العربية
Suppose an escaping player moves continuously at maximum speed 1 in the interior of a region, while a pursuing player moves continuously at maximum speed $r$ outside the region. For what $r$ can the first player escape the region, that is, reach the boundary a positive distance away from the pursuing player, assuming optimal play by both players? We formalize a model for this infinitesimally alternating 2-player game that we prove has a unique winner in any region with locally rectifiable boundary, avoiding pathological behaviors (where both players can have winning strategies) previously identified for pursuit-evasion games such as the Lion and Man problem in certain metric spaces. For some regions, including both equilateral triangle and square, we give exact results for the critical speed ratio, above which the pursuing player can win and below which the escaping player can win (and at which the pursuing player can win). For simple polygons, we give a simple formula and polynomial-time algorithm that is guaranteed to give a 10.89898-approximation to the critical speed ratio, and we give a pseudopolynomial-time approximation scheme for arbitrarily approximating the critical speed ratio. On the negative side, we prove NP-hardness of the problem for polyhedral domains in 3D, and prove stronger results (PSPACE-hardness and NP-hardness even to approximate) for generalizations to multiple escaping and pursuing players.
We consider the following game played in the Euclidean plane: There is any countable set of unit speed lions and one fast man who can run with speed $1+varepsilon$ for some value $varepsilon>0$. Can the man survive? We answer the question in the affirmative for any $varepsilon>0$.
We study the geodesic Voronoi diagram of a set $S$ of $n$ linearly moving sites inside a static simple polygon $P$ with $m$ vertices. We identify all events where the structure of the Voronoi diagram changes, bound the number of such events, and then
We construct a family of 17 disjoint axis-parallel line segments in the plane that do not admit a circumscribing polygon.
Deciding whether a family of disjoint line segments in the plane can be linked into a simple polygon (or a simple polygonal chain) by adding segments between their endpoints is NP-hard.
The problem of vertex guarding a simple polygon was first studied by Subir K. Ghosh (1987), who presented a polynomial-time $O(log n)$-approximation algorithm for placing as few guards as possible at vertices of a simple $n$-gon $P$, such that every