ﻻ يوجد ملخص باللغة العربية
We report the discovery of 31 low-luminosity (-14.5 > M_{AB}(B) > -18.8), extreme emission line galaxies (EELGs) at 0.2 < z < 0.9 identified by their unusually high rest-frame equivalent widths (100 < EW[OIII] < 1700 A) as part of the VIMOS Ultra Deep Survey (VUDS). VIMOS optical spectra of unprecedented sensitivity ($I_{AB}$ ~ 25 mag) along with multiwavelength photometry and HST imaging are used to investigate spectrophotometric properties of this unique sample and explore, for the first time, the very low stellar mass end (M* < 10^8 M$_{odot}$) of the luminosity-metallicity (LZR) and mass-metallicity (MZR) relations at z < 1. Characterized by their extreme compactness (R50 < 1 kpc), low stellar mass and enhanced specific star formation rates (SFR/M* ~ 10^{-9} - 10^{-7} yr^{-1}), the VUDS EELGs are blue dwarf galaxies likely experiencing the first stages of a vigorous galaxy-wide starburst. Using T_e-sensitive direct and strong-line methods, we find that VUDS EELGs are low-metallicity (7.5 < 12+log(O/H) < 8.3) galaxies with high ionization conditions, including at least three EELGs showing HeII 4686A emission and four EELGs of extremely metal-poor (<10% solar) galaxies. The LZR and MZR followed by EELGs show relatively large scatter, being broadly consistent with the extrapolation toward low luminosity and mass from previous studies at similar redshift. However, we find evidences that galaxies with younger and more vigorous star formation -- as characterized by their larger EWs, ionization and sSFR -- tend to be more metal-poor at a given stellar mass.
The aim of this paper is to investigate spectral and photometric properties of 854 faint ($i_{AB}$<~25 mag) star-forming galaxies (SFGs) at 2<z<2.5 using the VIMOS Ultra-Deep Survey (VUDS) spectroscopic data and deep multi-wavelength photometric data
We present sensitive CO (J = 1 - 0) emission line observations of three metal-poor dwarf irregular galaxies Leo P (Z ~ 3% Z_Solar), Sextans A (Z ~ 7.5% Z_Solar), and Sextans B (Z ~ 7.5% Z_Solar), all obtained with the Combined Array for Millimeter-wa
Current cosmological models indicate that the Milky Ways stellar halo was assembled from many smaller systems. Based on the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic bui
The Kennicutt-Schmidt (KS) relation between the gas mass and star formation rate (SFR) describes the star formation regulation in disk galaxies. It is a function of gas metallicity, but the low metallicity regime of the KS diagram is poorly sampled.
The first galaxies contain stars born out of gas with little or no metals. The lack of metals is expected to inhibit efficient gas cooling and star formation but this effect has yet to be observed in galaxies with oxygen abundance relative to hydroge