ترغب بنشر مسار تعليمي؟ اضغط هنا

Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor

178   0   0.0 ( 0 )
 نشر من قبل Anna Frebel
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Anna Frebel -




اسأل ChatGPT حول البحث

Current cosmological models indicate that the Milky Ways stellar halo was assembled from many smaller systems. Based on the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. However, verification of the iron-deficiency and measurements of additional elements, such as the alpha-element Mg, are mandatory for demonstrating that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming the iron abundance of less than 1/4000th that of the Sun, and showing that the overall abundance pattern mirrors that seen in low-metallicity halo stars, including the alpha-elements. Such chemical similarity indicates that the systems destroyed to form the halo billions of years ago were not fundamentally different from the progenitors of present-day dwarfs, and suggests that the early chemical enrichment of all galaxies may be nearly identical.



قيم البحث

اقرأ أيضاً

Although true metal-free Population III stars have so-far escaped discovery, their nature, and that of their supernovae, is revealed in the chemical products left behind in the next generations of stars. Here we report the detection of an ultra-metal poor star in the Sculptor dwarf spheroidal galaxy, AS0039. With [Fe/H]$_{rm LTE}=-4.11$, it is the most metal-poor star so far discovered in any external galaxy. Contrary to the majority of Milky Way stars at this metallicity, AS0039 is clearly not enhanced in carbon, with [C/Fe]$_{rm LTE}=-0.75$ and A(C)=+3.60, making it the lowest detected carbon abundance in any star to date. It furthermore lacks $alpha$-element uniformity, having extremely low [Mg/Ca]$_{rm NLTE}=-0.60$ and [Mg/Ti]$_{rm NLTE}=-0.86$, in stark contrast with the near solar ratios observed in C-normal stars within the Milky Way halo. The unique abundance pattern indicates that AS0039 formed out of material that was predominantly enriched by a $sim$20$ M_odot$ progenitor star with an unusually high explosion energy $E=10times10^{51}$ erg. The star AS0039 is thus one of the first observational evidence for zero-metallicity hypernovae and provides a unique opportunity to investigate the diverse nature of Population III stars.
We examine the spatial distribution of the oldest and most metal poor stellar populations of Milky Way-sized galaxies using the APOSTLE cosmological hydrodynamical simulations of the Local Group. In agreement with earlier work, we find strong radial gradients in the fraction of the oldest (tform < 0.8 Gyr) and most metal poor ([Fe/H]< -2.5) stars, both of which increase outwards. The most metal poor stars form over an extended period of time; half of them form after z = 5.3, and the last 10% after z = 2.8. The age of the metal poor stellar population also shows significant variation with environment; a high fraction of them are old in the galaxys central regions and an even higher fraction in some individual dwarf galaxies, with substantial scatter from dwarf to dwarf. Overall, over half of the stars that belong to both the oldest and most metal-poor population are found outside the solar circle. Somewhat counter-intuitively, we find that dwarf galaxies with a large fraction of metal poor stars that are very old are systems where metal poor stars are relatively rare, but where a substantial old population is present. Our results provide guidance for interpreting the results of surveys designed to hunt for the earliest and most pristine stellar component of our Milky Way.
We present a new model for the formation of stellar halos in dwarf galaxies. We demonstrate that the stars and star clusters that form naturally in the inner regions of dwarfs are expected to migrate from the gas rich, star forming centre to join the stellar spheroid. For dwarf galaxies, this process could be the dominant source of halo stars. The effect is caused by stellar feedback-driven bulk motions of dense gas which, by causing potential fluctuations in the inner regions of the halo, couple to all collisionless components. This effect has been demonstrated to generate cores in otherwise cuspy cold dark matter profiles and is particularly effective in dwarf galaxy haloes. It can build a stellar spheroid with larger ages and lower metallicities at greater radii without requiring an outside-in formation model. Globular cluster-type star clusters can be created in the galactic ISM and then migrate to the spheroid on 100thinspace Myr timescales. Once outside the inner regions they are less susceptible to tidal disruption and are thus long lived; clusters on wider orbits may be easily unbound from the dwarf to join the halo of a larger galaxy during a merger. A simulated dwarf galaxy ($text{M}_{vir}simeq10^{9}text{M}_{odot}$ at $z=5$) is used to examine this gravitational coupling to dark matter and stars.
144 - Evan N. Kirby 2009
The hierarchical theory of galaxy formation rests on the idea that smaller galactic structures merge to form the galaxies that we see today. The past decade has provided remarkable observational support for this scenario, driven in part by advances i n spectroscopic instrumentation. Multi-object spectroscopy enabled the discovery of kinematically cold substructures around the Milky Way and M31 that are likely the debris of disrupting satellites. Improvements in high-resolution spectroscopy have produced key evidence that the abundance patterns of the Milky Way halo and its dwarf satellites can be explained by Galactic chemical evolution models based on hierarchical assembly. These breakthroughs have depended almost entirely on observations of nearby stars in the Milky Way and luminous red giant stars in M31 and Local Group dwarf satellites. In the next decade, extremely large telescopes will allow observations far down the luminosity function in the known dwarf galaxies, and they will enable observations of individual stars far out in the Galactic halo. The chemical abundance census now available for the Milky Way will become possible for our nearest neighbor, M31. Velocity dispersion measurements now available in M31 will become possible for systems beyond the Local Group such as Sculptor and M81 Group galaxies. Detailed studies of a greater number of individual stars in a greater number of spiral galaxies and their satellites will test hierarchical assembly in new ways because dynamical and chemical evolution models predict different outcomes for halos of different masses in different environments.
We study numerically the formation of dSph galaxies. Intense star bursts, e.g. in gas-rich environments, typically produce a few to a few hundred young star clusters, within a region of just a few hundred pc. The dynamical evolution of these star clu sters may explain the formation of the luminous component of dwarf spheroidal galaxies (dSph). Here we perform a numerical experiment to show that the evolution of star clusters complexes in dark matter haloes can explain the formation of the luminous components of dSph galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا