ﻻ يوجد ملخص باللغة العربية
Strong field transient grating spectroscopy has shown to be a very versatile tool in time-resolved molecular spectroscopy. Here we use this technique to investigate the high-order harmonic generation from SF6 molecules vibrationally excited by impulsive stimulated Raman scattering. Transient grating spectroscopy enables us to reveal clear modulations of the harmonic emission. This heterodyne detection shows that the harmonic emission generated between 14 to 26 eV is mainly sensitive to two among the three active Raman modes in SF6, i.e. the strongest and fully symmetric nu 1-A1g mode (774 cm-1, 43 fs) and the slowest mode nu5-T2g (524 cm-1, 63 fs). A time-frequency analysis of the harmonic emission reveals additional dynamics: the strength and central frequency of the nu 1 mode oscillate with a frequency of 52 cm-1 (640 fs). This could be a signature of the vibration of dimers in the generating medium. Harmonic 11 shows a remarkable behavior, oscillating in opposite phase, both on the fast (774 cm-1) and slow (52 cm-1) timescales, which indicates a strong modulation of the recombination matrix element as a function of the nuclear geometry. These results demonstrate that the high sensitivity of high-order harmonic generation to molecularvibrations, associated to the high sensitivity of transient grating spectroscopy, make their combination a unique tool to probe vibrational dynamics.
We study theoretically and experimentally the electronic relaxation of NO2 molecules excited by absorption of one ~400 nm pump photon. Semi-classical simulations based on trajectory surface hopping calculations are performed. They predict fast oscill
Quantum beats in nonlinear spectroscopy of molecular aggregates are often attributed to electronic phenomena of excitonic systems, while nuclear degrees of freedom are commonly included into models as overdamped oscillations of bath constituents resp
Structure-property relationships are the foundation of materials science. Linking microstructure and material properties is essential for predicting material response to driving forces, managing in-service material degradation, and engineering materi
Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demon
Coherent light pulses of few to hundreds of femtoseconds (fs) duration have prolifically served the field of ultrafast phenomena. While fs pulses address mainly dynamics of nuclear motion in molecules or lattices in the gas, liquid or condensed matte