ترغب بنشر مسار تعليمي؟ اضغط هنا

Information Evolution in Social Networks

173   0   0.0 ( 0 )
 نشر من قبل Lada A. Adamic
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Social networks readily transmit information, albeit with less than perfect fidelity. We present a large-scale measurement of this imperfect information copying mechanism by examining the dissemination and evolution of thousands of memes, collectively replicated hundreds of millions of times in the online social network Facebook. The information undergoes an evolutionary process that exhibits several regularities. A memes mutation rate characterizes the population distribution of its variants, in accordance with the Yule process. Variants further apart in the diffusion cascade have greater edit distance, as would be expected in an iterative, imperfect replication process. Some text sequences can confer a replicative advantage; these sequences are abundant and transfer laterally between different memes. Subpopulations of the social network can preferentially transmit a specific variant of a meme if the variant matches their beliefs or culture. Understanding the mechanism driving change in diffusing information has important implications for how we interpret and harness the information that reaches us through our social networks.



قيم البحث

اقرأ أيضاً

Social media sites are information marketplaces, where users produce and consume a wide variety of information and ideas. In these sites, users typically choose their information sources, which in turn determine what specific information they receive , how much information they receive and how quickly this information is shown to them. In this context, a natural question that arises is how efficient are social media users at selecting their information sources. In this work, we propose a computational framework to quantify users efficiency at selecting information sources. Our framework is based on the assumption that the goal of users is to acquire a set of unique pieces of information. To quantify users efficiency, we ask if the user could have acquired the same pieces of information from another set of sources more efficiently. We define three different notions of efficiency -- link, in-flow, and delay -- corresponding to the number of sources the user follows, the amount of (redundant) information she acquires and the delay with which she receives the information. Our definitions of efficiency are general and applicable to any social media system with an underlying information network, in which every user follows others to receive the information they produce. In our experiments, we measure the efficiency of Twitter users at acquiring different types of information. We find that Twitter users exhibit sub-optimal efficiency across the three notions of efficiency, although they tend to be more efficient at acquiring non-popular than popular pieces of information. We then show that this lack of efficiency is a consequence of the triadic closure mechanism by which users typically discover and follow other users in social media. Finally, we develop a heuristic algorithm that enables users to be significantly more efficient at acquiring the same unique pieces of information.
Events are happening in real-world and real-time, which can be planned and organized for occasions, such as social gatherings, festival celebrations, influential meetings or sports activities. Social media platforms generate a lot of real-time text i nformation regarding public events with different topics. However, mining social events is challenging because events typically exhibit heterogeneous texture and metadata are often ambiguous. In this paper, we first design a novel event-based meta-schema to characterize the semantic relatedness of social events and then build an event-based heterogeneous information network (HIN) integrating information from external knowledge base. Second, we propose a novel Pairwise Popularity Graph Convolutional Network, named as PP-GCN, based on weighted meta-path instance similarity and textual semantic representation as inputs, to perform fine-grained social event categorization and learn the optimal weights of meta-paths in different tasks. Third, we propose a streaming social event detection and evolution discovery framework for HINs based on meta-path similarity search, historical information about meta-paths, and heterogeneous DBSCAN clustering method. Comprehensive experiments on real-world streaming social text data are conducted to compare various social event detection and evolution discovery algorithms. Experimental results demonstrate that our proposed framework outperforms other alternative social event detection and evolution discovery techniques.
While social interactions are critical to understanding consumer behavior, the relationship between social and commerce networks has not been explored on a large scale. We analyze Taobao, a Chinese consumer marketplace that is the worlds largest e-co mmerce website. What sets Taobao apart from its competitors is its integrated instant messaging tool, which buyers can use to ask sellers about products or ask other buyers for advice. In our study, we focus on how an individuals commercial transactions are embedded in their social graphs. By studying triads and the directed closure process, we quantify the presence of information passing and gain insights into when different types of links form in the network. Using seller ratings and review information, we then quantify a price of trust. How much will a consumer pay for transaction with a trusted seller? We conclude by modeling this consumer choice problem: if a buyer wishes to purchase a particular product, how does (s)he decide which store to purchase it from? By analyzing the performance of various feature sets in an information retrieval setting, we demonstrate how the social graph factors into understanding consumer behavior.
415 - Daniel M. Romero , Brian Uzzi , 2016
Social network research has begun to take advantage of fine-grained communications regarding coordination, decision-making, and knowledge sharing. These studies, however, have not generally analyzed how external events are associated with a social ne tworks structure and communicative properties. Here, we study how external events are associated with a networks change in structure and communications. Analyzing a complete dataset of millions of instant messages among the decision-makers in a large hedge fund and their network of outside contacts, we investigate the link between price shocks, network structure, and change in the affect and cognition of decision-makers embedded in the network. When price shocks occur the communication network tends not to display structural changes associated with adaptiveness. Rather, the network turtles up. It displays a propensity for higher clustering, strong tie interaction, and an intensification of insider vs. outsider communication. Further, we find changes in network structure predict shifts in cognitive and affective processes, execution of new transactions, and local optimality of transactions better than prices, revealing the important predictive relationship between network structure and collective behavior within a social network.
This paper explains the design of a social network analysis framework, developed under DARPAs SocialSim program, with novel architecture that models human emotional, cognitive and social factors. Our framework is both theory and data-driven, and util izes domain expertise. Our simulation effort helps in understanding how information flows and evolves in social media platforms. We focused on modeling three information domains: cryptocurrencies, cyber threats, and software vulnerabilities for the three interrelated social environments: GitHub, Reddit, and Twitter. We participated in the SocialSim DARPA Challenge in December 2018, in which our models were subjected to extensive performance evaluation for accuracy, generalizability, explainability, and experimental power. This paper reports the main concepts and models, utilized in our social media modeling effort in developing a multi-resolution simulation at the user, community, population, and content levels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا