ترغب بنشر مسار تعليمي؟ اضغط هنا

The Role of Social Networks in Online Shopping: Information Passing, Price of Trust, and Consumer Choice

155   0   0.0 ( 0 )
 نشر من قبل Stephen Guo
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While social interactions are critical to understanding consumer behavior, the relationship between social and commerce networks has not been explored on a large scale. We analyze Taobao, a Chinese consumer marketplace that is the worlds largest e-commerce website. What sets Taobao apart from its competitors is its integrated instant messaging tool, which buyers can use to ask sellers about products or ask other buyers for advice. In our study, we focus on how an individuals commercial transactions are embedded in their social graphs. By studying triads and the directed closure process, we quantify the presence of information passing and gain insights into when different types of links form in the network. Using seller ratings and review information, we then quantify a price of trust. How much will a consumer pay for transaction with a trusted seller? We conclude by modeling this consumer choice problem: if a buyer wishes to purchase a particular product, how does (s)he decide which store to purchase it from? By analyzing the performance of various feature sets in an information retrieval setting, we demonstrate how the social graph factors into understanding consumer behavior.



قيم البحث

اقرأ أيضاً

Social media sites are information marketplaces, where users produce and consume a wide variety of information and ideas. In these sites, users typically choose their information sources, which in turn determine what specific information they receive , how much information they receive and how quickly this information is shown to them. In this context, a natural question that arises is how efficient are social media users at selecting their information sources. In this work, we propose a computational framework to quantify users efficiency at selecting information sources. Our framework is based on the assumption that the goal of users is to acquire a set of unique pieces of information. To quantify users efficiency, we ask if the user could have acquired the same pieces of information from another set of sources more efficiently. We define three different notions of efficiency -- link, in-flow, and delay -- corresponding to the number of sources the user follows, the amount of (redundant) information she acquires and the delay with which she receives the information. Our definitions of efficiency are general and applicable to any social media system with an underlying information network, in which every user follows others to receive the information they produce. In our experiments, we measure the efficiency of Twitter users at acquiring different types of information. We find that Twitter users exhibit sub-optimal efficiency across the three notions of efficiency, although they tend to be more efficient at acquiring non-popular than popular pieces of information. We then show that this lack of efficiency is a consequence of the triadic closure mechanism by which users typically discover and follow other users in social media. Finally, we develop a heuristic algorithm that enables users to be significantly more efficient at acquiring the same unique pieces of information.
Parler is as an alternative social network promoting itself as a service that allows to speak freely and express yourself openly, without fear of being deplatformed for your views. Because of this promise, the platform become popular among users who were suspended on mainstream social networks for violating their terms of service, as well as those fearing censorship. In particular, the service was endorsed by several conservative public figures, encouraging people to migrate from traditional social networks. After the storming of the US Capitol on January 6, 2021, Parler has been progressively deplatformed, as its app was removed from Apple/Google Play stores and the website taken down by the hosting provider. This paper presents a dataset of 183M Parler posts made by 4M users between August 2018 and January 2021, as well as metadata from 13.25M user profiles. We also present a basic characterization of the dataset, which shows that the platform has witnessed large influxes of new users after being endorsed by popular figures, as well as a reaction to the 2020 US Presidential Election. We also show that discussion on the platform is dominated by conservative topics, President Trump, as well as conspiracy theories like QAnon.
Social networks readily transmit information, albeit with less than perfect fidelity. We present a large-scale measurement of this imperfect information copying mechanism by examining the dissemination and evolution of thousands of memes, collectivel y replicated hundreds of millions of times in the online social network Facebook. The information undergoes an evolutionary process that exhibits several regularities. A memes mutation rate characterizes the population distribution of its variants, in accordance with the Yule process. Variants further apart in the diffusion cascade have greater edit distance, as would be expected in an iterative, imperfect replication process. Some text sequences can confer a replicative advantage; these sequences are abundant and transfer laterally between different memes. Subpopulations of the social network can preferentially transmit a specific variant of a meme if the variant matches their beliefs or culture. Understanding the mechanism driving change in diffusing information has important implications for how we interpret and harness the information that reaches us through our social networks.
415 - Daniel M. Romero , Brian Uzzi , 2016
Social network research has begun to take advantage of fine-grained communications regarding coordination, decision-making, and knowledge sharing. These studies, however, have not generally analyzed how external events are associated with a social ne tworks structure and communicative properties. Here, we study how external events are associated with a networks change in structure and communications. Analyzing a complete dataset of millions of instant messages among the decision-makers in a large hedge fund and their network of outside contacts, we investigate the link between price shocks, network structure, and change in the affect and cognition of decision-makers embedded in the network. When price shocks occur the communication network tends not to display structural changes associated with adaptiveness. Rather, the network turtles up. It displays a propensity for higher clustering, strong tie interaction, and an intensification of insider vs. outsider communication. Further, we find changes in network structure predict shifts in cognitive and affective processes, execution of new transactions, and local optimality of transactions better than prices, revealing the important predictive relationship between network structure and collective behavior within a social network.
A number of recent studies of information diffusion in social media, both empirical and theoretical, have been inspired by viral propagation models derived from epidemiology. These studies model the propagation of memes, i.e., pieces of information, between users in a social network similarly to the way diseases spread in human society. Importantly, one would expect a meme to spread in a social network amongst the people who are interested in the topic of that meme. Yet, the importance of topicality for information diffusion has been less explored in the literature. Here, we study empirical data about two different types of memes (hashtags and URLs) spreading through the Twitters online social network. For every meme, we infer its topics and for every user, we infer her topical interests. To analyze the impact of such topics on the propagation of memes, we introduce a novel theoretical framework of information diffusion. Our analysis identifies two distinct mechanisms, namely topical and non-topical, of information diffusion. The non-topical information diffusion resembles disease spreading as in simple contagion. In contrast, the topical information diffusion happens between users who are topically aligned with the information and has characteristics of complex contagion. Non-topical memes spread broadly among all users and end up being relatively popular. Topical memes spread narrowly among users who have interests topically aligned with them and are diffused more readily after multiple exposures. Our results show that the topicality of memes and users interests are essential for understanding and predicting information diffusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا