ترغب بنشر مسار تعليمي؟ اضغط هنا

A percolation system with extremely long range connections and node dilution

320   0   0.0 ( 0 )
 نشر من قبل Maurizio Serva
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the very long-range bond-percolation problem on a linear chain with both sites and bonds dilution. Very long range means that the probability $p_{ij}$ for a connection between two occupied sites $i,j$ at a distance $r_{ij}$ decays as a power law, i.e. $p_{ij} = rho/[r_{ij}^alpha N^{1-alpha}]$ when $ 0 le alpha < 1$, and $p_{ij} = rho/[r_{ij} ln(N)]$ when $alpha = 1$. Site dilution means that the occupancy probability of a site is $0 < p_s le 1$. The behavior of this model results from the competition between long-range connectivity, which enhances the percolation, and site dilution, which weakens percolation. The case $alpha=0$ with $p_s =1 $ is well-known, being the exactly solvable mean-field model. The percolation order parameter $P_infty$ is investigated numerically for different values of $alpha$, $p_s$ and $rho$. We show that in the ranges $ 0 le alpha le 1$ and $0 < p_s le 1$ the percolation order parameter $P_infty$ depends only on the average connectivity $gamma$ of sites, which can be explicitly computed in terms of the three parameters $alpha$, $p_s$ and $rho$.



قيم البحث

اقرأ أيضاً

We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power sigma of the distance. We show that there is a value of sigma of the long-range model for which the critical behavior is very similar to that of the short-range model in four dimensions. We also study a value of sigma for which we find the critical behavior to be compatible with that of the three dimensional model, though we have much less precision than in the four-dimensional case.
Long-range interacting systems such as nitrogen vacancy centers in diamond and trapped ions serve as useful experimental setups to probe a range of nonequilibrium many-body phenomena. In particular, via driving, various effective Hamiltonians with ph ysics potentially quite distinct from short-range systems can be realized. In this Letter, we derive general bounds on the linear response energy absorption rates of periodically driven systems of spins or fermions with long-range interactions that are sign changing and fall off as $1/r^alpha$ with $alpha > d/2$. We show that the disordered averaged energy absorption rate at high temperature decays exponentially with the driving frequency. This strongly suggests the presence of a prethermal plateau in which dynamics is governed by an effective, static Hamiltonian for long times, and we provide numerical evidence to support such a statement. Our results are relevant for understanding timescales of both heating and hence new dynamical regimes described by effective Hamiltonians in such long-range systems.
We study critical behavior of the diluted 2D Ising model in the presence of disorder correlations which decay algebraically with distance as $sim r^{-a}$. Mapping the problem onto 2D Dirac fermions with correlated disorder we calculate the critical p roperties using renormalization group up to two-loop order. We show that beside the Gaussian fixed point the flow equations have a non trivial fixed point which is stable for $0.995<a<2$ and is characterized by the correlation length exponent $ u= 2/a + O((2-a)^3)$. Using bosonization, we also calculate the averaged square of the spin-spin correlation function and find the corresponding critical exponent $eta_2=1/2-(2-a)/4+O((2-a)^2)$.
The dynamics and the stationary states of an exactly solvable three-state layered feed-forward neural network model with asymmetric synaptic connections, finite dilution and low pattern activity are studied in extension of a recent work on a recurren t network. Detailed phase diagrams are obtained for the stationary states and for the time evolution of the retrieval overlap with a single pattern. It is shown that the network develops instabilities for low thresholds and that there is a gradual improvement in network performance with increasing threshold up to an optimal stage. The robustness to synaptic noise is checked and the effects of dilution and of variable threshold on the information content of the network are also established.
We perform Monte Carlo simulations to determine the average excluded area $<A_{ex}>$ of randomly oriented squares, randomly oriented widthless sticks and aligned squares in two dimensions. We find significant differences between our results for rando mly oriented squares and previous analytical results for the same. The sources of these differences are explained. Using our results for $<A_{ex}>$ and Monte Carlo simulation results for the percolation threshold, we estimate the mean number of connections per object $B_c$ at the percolation threshold for squares in 2-D. We study systems of squares that are allowed random orientations within a specified angular interval. Our simulations show that the variation in $B_c$ is within 1.6% when the angular interval is varied from 0 to $pi/2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا