ﻻ يوجد ملخص باللغة العربية
We aim to use signatures of microlensing induced by stars in the foreground lens galaxy to infer the size of the accretion disk in the gravitationally lensed quasar Q 0957+561. The long-term photometric monitoring of this system (which so far has provided the longest available light curves of a gravitational lens system) permits us to evaluate the impact of uncertainties on our recently developed method (controlled by the distance between the modeled and the experimental magnitude difference histograms between two lensed images), and thus to test the robustness of microlensing-based disk-size estimates. We analyzed the well-sampled 21-year GLENDAMA optical light curves of the double-lensed quasar and studied the intrinsic and extrinsic continuum variations. Using accurate measurements for the time delay between the images A and B, we modeled and removed the intrinsic quasar variability, and from the statistics of microlensing magnifications we used a Bayesian method to derive the size of the region emitting the continuum at 2558 angstroms. Analyses of the Q 0957+561 R-band light curves show a slow but systematic increase in the brightness of the B relative to the A component during the past ten years. The relatively low strength of the magnitude differences between the images indicates that the quasar has an unusually big optical accretion disk of half-light radius $R_{1/2} = 17.6 pm 6.1 sqrt{M/0.3M_odot}$ lt-days.
We intend to use the impact of microlensing on the Fe III emission line blend along with a measure of its gravitational redshift to estimate the mass of the quasars central supermassive black hole (SMBH). We fit the Fe III feature in multiple spectro
Knowledge about how the nonlinear behaviour of the intrinsic signal from lensed background sources changes on its path to the observer provides much information, particularly about the matter distribution in lensing galaxies and the physical properti
Imaging and spectra of the lensed QSO pair 0957+561 are presented and discussed. The data are principally those from the STIS NUV MAMA, and cover rest wavelengths from 850A to 1350A. The QSOs are both extended over about 1 arcsec, with morphology tha
We present 13 seasons of $R$-band photometry of the quadruply-lensed quasar WFI 2033-4723 from the 1.3m SMARTS telescope at CTIO and the 1.2m Euler Swiss Telescope at La Silla, in which we detect microlensing variability of $sim0.2$ mags on a timesca
We present eight monitoring seasons of the four brightest images of the gravitational lens SDSS J1004+4112 observed between December 2003 and October 2010. Using measured time delays for the images A, B and C and the model predicted time delay for im