ترغب بنشر مسار تعليمي؟ اضغط هنا

An HST/COS Survey of the Low-Redshift IGM. I. Survey, Methodology, & Overall Results

121   0   0.0 ( 0 )
 نشر من قبل Charles W. Danforth
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

To establish the connection between galaxies and UV-detected absorption systems in the local universe, a deep ($gleq20$) and wide ($sim20^{prime}$ radius) galaxy redshift survey is presented around 47 sight lines to UV-bright AGN observed by the Cosm ic Origins Spectrograph (COS). Specific COS science team papers have used this survey to connect absorbers to galaxies, groups of galaxies, and large-scale structures, including voids. Here we present the technical details of the survey and the basic measurements required for its use, including redshifts for individual galaxies and uncertainties determined collectively by spectral class (emission-line, absorption-line, and composite spectra) and completeness for each sight line as a function of impact parameter and magnitude. For most of these sight lines the design criteria of $>90$% completeness over a $>1$ Mpc region down to $lesssim0.1,L^*$ luminosities at $zleq0.1$ allows a plausible association between low-$z$ absorbers and individual galaxies. Ly$alpha$ covering fractions are computed to approximate the star-forming and passive galaxy populations using the spectral classes above. In agreement with previous results, the covering fraction of star-forming galaxies with $Lgeq0.3,L^*$ is consistent with unity inside one virial radius and declines slowly to $>50$% at 4 virial radii. On the other hand, passive galaxies have lower covering fractions ($sim60$%) and a shallower decline with impact parameter, suggesting that their gaseous halos are patchy but have a larger scale-length than star-forming galaxies. All spectra obtained by this project are made available electronically for individual measurement and use.
We analyze new far-ultraviolet spectra of 13 quasars from the z~0.2 COS-Halos survey that cover the HI Lyman limit of 14 circumgalactic medium (CGM) systems. These data yield precise estimates or more constraining limits than previous COS-Halos measu rements on the HI column densities NHI. We then apply a Monte-Carlo Markov Chain approach on 32 systems from COS-Halos to estimate the metallicity of the cool (T~10^4K) CGM gas that gives rise to low-ionization state metal lines, under the assumption of photoionization equilibrium with the extragalactic UV background. The principle results are: (1) the CGM of field L* galaxies exhibits a declining HI surface density with impact parameter Rperp (at >99.5%$ confidence), (2) the transmission of ionizing radiation through CGM gas alone is 70+/-7%; (3) the metallicity distribution function of the cool CGM is unimodal with a median of 1/3 Z_Sun and a 95% interval from ~1/50 Z_Sun to over 3x solar. The incidence of metal poor (<1/100 Z_Sun) gas is low, implying any such gas discovered along quasar sightlines is typically unrelated to L* galaxies; (4) we find an unexpected increase in gas metallicity with declining NHI (at >99.9% confidence) and, therefore, also with increasing Rperp. The high metallicity at large radii implies early enrichment; (5) A non-parametric estimate of the cool CGM gas mass is M_CGM_cool = 9.2 +/- 4.3 10^10 Msun, which together with new mass estimates for the hot CGM may resolve the galactic missing baryons problem. Future analyses of halo gas should focus on the underlying astrophysics governing the CGM, rather than processes that simply expel the medium from the halo.
We present a neutral hydrogen-selected absorption-line survey of gas with HI column densities 15<log N(HI)<19 at z<1 using the Cosmic Origins Spectrograph on the Hubble Space Telescope. Our main aim is to determine the metallicity distribution of the se absorbers. Our sample consists of 224 absorbers selected on the basis of their HI absorption strength. Here we discuss the properties of our survey and the immediate empirical results. We find singly and doubly ionized metal species and HI typically have similar velocity profiles, implying they probe gas in the same or similar environments. The column density ionic ratios (e.g., CII/CIII, OI/CII) indicate the gas in these absorbers is largely ionized, and the ionization conditions are quite comparable across the sampled N(HI) range. The Doppler parameters of the HI imply T<50,000 K on average, consistent with the gas being photoionized. The MgII column densities span >2 orders of magnitude at any given N(HI), indicating a wide range of metallicities (from solar to <1/100 solar). In the range 16.2<log N(HI)<17, there is a gap in the N(MgII) distribution corresponding to gas with ~10% solar metallicity, consistent with the gap seen in the previously identified bimodal metallicity distribution in this column density regime. Less than 3% of the absorbers in our sample show no detectable metal absorption, implying truly-pristine gas at z<1 is uncommon. We find [FeII/MgII] = -0.4+/-0.3, and since alpha-enhancement can affect this ratio, dust depletion is extremely mild.
114 - Daniel D. Kelson 2012
We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer 3.6micron imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z~1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star-formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded 37,000 high quality redshifts in our first 5.3 sq.degs of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6micron fluxes of our selection, we find typical uncertainties of sigma_z/(1+z) < 0.015. In comparisons with previously published VVDS redshifts, for example, we find a scatter of sigma_z/(1+z) = 0.012 for galaxies at 0.8< z< 1.2. For galaxies brighter and fainter than i=23 mag, we find sigma_z/(1+z) = 0.009 and sigma_z/(1+z) = 0.025, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment.
196 - Daniel D. Kelson 2014
We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with IMACS on Magellan-Baade. CSI uses a flux-limited sample of galaxies in Spitzer IRAC 3.6micron imaging of SWIRE fields to effic iently trace the stellar mass of average galaxies to z~1.5. This paper provides an overview of the survey selection, observations, and processing of the photometry and spectrophotometry. We also describe the analysis of the data: new methods of fitting synthetic SEDs are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star-formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high quality redshifts for 43,347 galaxies in our first 5.3 sq. degs of the SWIRE XMM-LSS field. A new approach to assessing data quality is also described, and three different approaches are used to estimate our redshift errors, with robust agreement. Over the full range of 3.6micron fluxes of our selection, we find typical redshift uncertainties of sigma_z/(1+z) < 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of sigma_z/(1+z) = 0.011 for galaxies at 0.7< z< 0.9, and sigma_z/(1+z) = 0.014 for galaxies at 0.9< z< 1.2. For galaxies brighter and fainter than i=23 mag, we find sigma_z/(1+z) = 0.008 and sigma_z/(1+z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا