ﻻ يوجد ملخص باللغة العربية
A general form of a two-qubit system is obtained under the effect of Lorentz transformation. We investigate extensively some important classes in the context of quantum information. It is shown Lorentz transformation causes a decay of entanglement and consequently information loses. On the other hand, it generates entangled states between systems prepared initially in a separable states. The partial entangled states are more robust under Lorentz transformation than maximally entangled states. Therefore the rate of information lose is larger for maximum entangled states compared with that for partially entangled states.
I tell about different mathematical tool that is important in general relativity. The text of the book includes definition of geometrical object, concept of reference frame, geometry of metric-affinne manifold. Using this concept I learn few physical
Applying the fact that guided photons inside a waveguide can be treated as massive particles, one can study the superluminality of evanescent modes via showing that a massive particle can propagate over a spacelike interval, which corresponds to quan
We provide a detailed analysis of the question: how many measurement settings or outcomes are needed in order to identify a quantum system which is constrained by prior information? We show that if the prior information restricts the system to a set
For the two-dimensional Schrodinger equation, the general form of the point transformations such that the result can be interpreted as a Schrodinger equation with effective (i.e. position dependent) mass is studied. A wide class of such models with d
The dynamics of two variants of quantum Fisher information under decoherence are investigated from a geometrical point of view. We first derive the explicit formulas of these two quantities for a single qubit in terms of the Bloch vector. Moreover, w