ﻻ يوجد ملخص باللغة العربية
Radio astronomical imaging arrays comprising large numbers of antennas, O(10^2-10^3) have posed a signal processing challenge because of the required O(N^2) cross correlation of signals from each antenna and requisite signal routing. This motivated the implementation of a Packetized Correlator architecture that applies Field Programmable Gate Arrays (FPGAs) to the O(N) F-stage transforming time domain to frequency domain data, and Graphics Processing Units (GPUs) to the O(N^2) X-stage performing an outer product among spectra for each antenna. The design is readily scalable to at least O(10^3) antennas. Fringes, visibility amplitudes and sky image results obtained during field testing are presented.
The digital correlator is a crucial element in a modern radio telescope. In this paper we describe a scalable design of the correlator system for the Tianlai pathfinder array, which is an experiment dedicated to test the key technologies for conducti
We present an overview of the ICE hardware and software framework that implements large arrays of interconnected FPGA-based data acquisition, signal processing and networking nodes economically. The system was conceived for application to radio, mill
We present the implementation and performance of a class of directionally unsplit Riemann-solver-based hydrodynamic schemes on Graphic Processing Units (GPU). These schemes, including the MUSCL-Hancock method, a variant of the MUSCL-Hancock method, a
FPGA-based hardware accelerators for convolutional neural networks (CNNs) have obtained great attentions due to their higher energy efficiency than GPUs. However, it is challenging for FPGA-based solutions to achieve a higher throughput than GPU coun
The next generation of Adaptive Optics (AO) systems on large telescopes will require immense computation performance and memory bandwidth, both of which are challenging with the technology available today. The objective of this work is to create a fu