ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of Starless and Prestellar Cores in Taurus Revealed by Herschel SPIRE/PACS Imaging

130   0   0.0 ( 0 )
 نشر من قبل Kenneth Marsh
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The density and temperature structures of dense cores in the L1495 cloud of the Taurus star-forming region are investigated using Herschel SPIRE and PACS images in the 70 $mu$m, 160 $mu$m, 250 $mu$m, 350 $mu$m and 500 $mu$m continuum bands. A sample consisting of 20 cores, selected using spectral and spatial criteria, is analysed using a new maximum likelihood technique, COREFIT, which takes full account of the instrumental point spread functions. We obtain central dust temperatures, $T_0$, in the range 6-12 K and find that, in the majority of cases, the radial density falloff at large radial distances is consistent with the $r^{-2}$ variation expected for Bonnor-Ebert spheres. Two of our cores exhibit a significantly steeper falloff, however, and since both appear to be gravitationally unstable, such behaviour may have implications for collapse models. We find a strong negative correlation between $T_0$ and peak column density, as expected if the dust is heated predominantly by the interstellar radiation field. At the temperatures we estimate for the core centres, carbon-bearing molecules freeze out as ice mantles on dust grains, and this behaviour is supported here by the lack of correspondence between our estimated core locations and the previously-published positions of H$^{13}$CO$^+$ peaks. On this basis, our observations suggest a sublimation-zone radius typically $sim 10^4$ AU. Comparison with previously-published N$_2$H$^+$ data at 8400 AU resolution, however, shows no evidence for N$_2$H$^+$ depletion at that resolution.



قيم البحث

اقرأ أيضاً

Herschel PACS and SPIRE images have been obtained over a 30x30 area around the well-known carbon star CW Leo (IRC +10 216). An extended structure is found in an incomplete arc of ~22 diameter, which is cospatial with the termination shock due to inte raction with the interstellar medium (ISM) as defined by Sahai & Chronopoulos from ultraviolet GALEX images. Fluxes are derived in the 70, 160, 250, 350, and 550 um bands in the region where the interaction with the ISM takes place, and this can be fitted with a modified black body with a temperature of 25+-3 K. Using the published proper motion and radial velocity for the star, we derive a heliocentric space motion of 25.1 km/s. Using the PACS and SPIRE data and the analytical formula of the bow shock structure, we infer a de-projected standoff distance of the bow shock of R0 = (8.0+-0.3)x10^17 cm. We also derive a relative velocity of the star with respect to the ISM of (106.6+-8.7)/sqrt(n_ISM) km/s, where n_ISM is the number density of the local ISM.
In this paper we will discuss the images of Planetary Nebulae that have recently been obtained with PACS and SPIRE on board the Herschel satellite. This comprises results for NGC 650 (the little Dumbbell nebula), NGC 6853 (the Dumbbell nebula), and NGC 7293 (the Helix nebula).
54 - F. Louvet , S. Neupane , G. Garay 2018
Two families of models compete to explain the formation of high-mass stars. The quasi-static models predict the existence of high-mass pre-stellar cores sustained by a high degree of turbulence while competitive accretion models predict that high-mas s proto-stellar cores evolve from low/intermediate mass proto-stellar cores in dynamic environments. We present ALMA (1.4 mm continuum emission and $^{12}$CO emission line) and MOPRA (HCO$^{+}$, H$^{13}$CO$^{+}$ and N$_2$H$^+$ molecular line emissions) observations of a sample of 9 starless massive dense cores (MDCs) discovered in a recent Herschel/HOBYS study that have masses and sizes ($sim$110 M$_odot$ and $rsim$0.1 pc, respectively) similar to the initial conditions used in the quasi-static models. The MOPRA molecular line features show that 3 of the starless MDCs are subvirialized with $alpha_{rm vir}sim$0.35, and 4 MDCs show sign of collapse. Our ALMA observations, on the other hand, show very little fragmentation within the MDCs whereas the observations resolve the Jeans length ($lambda_{rm Jeans}sim$0.03 pc) and are sensitive to the Jeans mass (M$_{rm Jeans}sim$0.65 M$_odot$) in the 9 starless MDCs. Only two of the starless MDCs host compact continuum sources, whose fluxes correspond to $<3$ M$_odot$ fragments. Therefore the mass reservoir of the MDCs has not yet been accreted onto compact objects, and most of the emission is filtered out by the interferometer. These observations do not support the quasi-static models for high-mass star formation since no high-mass pre-stellar core is found in NGC6334. The competitive accretion models, on the other hand, predict a level of fragmentation much higher than what we observe.
We obtained Herschel PACS and SPIRE images of the thermal emission of the debris disk around the A5V star {beta} Pic. The disk is well resolved in the PACS filters at 70, 100, and 160 {mu}m. The surface brightness profiles between 70 and 160 {mu}m sh ow no significant asymmetries along the disk, and are compatible with 90% of the emission between 70 and 160 {mu}m originating in a region closer than 200 AU to the star. Although only marginally resolving the debris disk, the maps obtained in the SPIRE 250 - 500 {mu}m filters provide full-disk photometry, completing the SED over a few octaves in wavelength that had been previously inaccessible. The small far-infrared spectral index ({beta} = 0.34) indicates that the grain size distribution in the inner disk (<200AU) is inconsistent with a local collisional equilibrium. The size distribution is either modified by non-equilibrium effects, or exhibits a wavy pattern, caused by an under-abundance of impactors which have been removed by radiation pressure.
In dense starless and protostellar cores, the relative abundance of deuterated species to their non-deuterated counterparts can become orders of magnitude greater than in the local interstellar medium. This enhancement proceeds through multiple pathw ays in the gas phase and on dust grains, where the chemistry is strongly dependent on the physical conditions. In this Chapter, we discuss how sensitive, high resolution observations with the ngVLA of emission from deuterated molecules will trace both the dense gas structure and kinematics on the compact physical scales required to track the gravitational collapse of star-forming cores and the subsequent formation of young protostars and circumstellar accretion regions. Simultaneously, such observations will play a critical role in tracing the chemical history throughout the various phases of star and planet formation. Many low-J transitions of key deuterated species, along with their undeuterated counterparts, lie within the 60-110 GHz frequency window, the lower end of which is largely unavailable with current facilities and instrumentation. The combination of sensitivity and angular resolution provided only by the ngVLA will enable unparalleled detailed studies of the physics and chemistry of the earliest stages of star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا