ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel PACS and SPIRE imaging of CW Leo

415   0   0.0 ( 0 )
 نشر من قبل Djazia Ladjal
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Herschel PACS and SPIRE images have been obtained over a 30x30 area around the well-known carbon star CW Leo (IRC +10 216). An extended structure is found in an incomplete arc of ~22 diameter, which is cospatial with the termination shock due to interaction with the interstellar medium (ISM) as defined by Sahai & Chronopoulos from ultraviolet GALEX images. Fluxes are derived in the 70, 160, 250, 350, and 550 um bands in the region where the interaction with the ISM takes place, and this can be fitted with a modified black body with a temperature of 25+-3 K. Using the published proper motion and radial velocity for the star, we derive a heliocentric space motion of 25.1 km/s. Using the PACS and SPIRE data and the analytical formula of the bow shock structure, we infer a de-projected standoff distance of the bow shock of R0 = (8.0+-0.3)x10^17 cm. We also derive a relative velocity of the star with respect to the ISM of (106.6+-8.7)/sqrt(n_ISM) km/s, where n_ISM is the number density of the local ISM.



قيم البحث

اقرأ أيضاً

In this paper we will discuss the images of Planetary Nebulae that have recently been obtained with PACS and SPIRE on board the Herschel satellite. This comprises results for NGC 650 (the little Dumbbell nebula), NGC 6853 (the Dumbbell nebula), and NGC 7293 (the Helix nebula).
We obtained Herschel PACS and SPIRE images of the thermal emission of the debris disk around the A5V star {beta} Pic. The disk is well resolved in the PACS filters at 70, 100, and 160 {mu}m. The surface brightness profiles between 70 and 160 {mu}m sh ow no significant asymmetries along the disk, and are compatible with 90% of the emission between 70 and 160 {mu}m originating in a region closer than 200 AU to the star. Although only marginally resolving the debris disk, the maps obtained in the SPIRE 250 - 500 {mu}m filters provide full-disk photometry, completing the SED over a few octaves in wavelength that had been previously inaccessible. The small far-infrared spectral index ({beta} = 0.34) indicates that the grain size distribution in the inner disk (<200AU) is inconsistent with a local collisional equilibrium. The size distribution is either modified by non-equilibrium effects, or exhibits a wavy pattern, caused by an under-abundance of impactors which have been removed by radiation pressure.
The density and temperature structures of dense cores in the L1495 cloud of the Taurus star-forming region are investigated using Herschel SPIRE and PACS images in the 70 $mu$m, 160 $mu$m, 250 $mu$m, 350 $mu$m and 500 $mu$m continuum bands. A sample consisting of 20 cores, selected using spectral and spatial criteria, is analysed using a new maximum likelihood technique, COREFIT, which takes full account of the instrumental point spread functions. We obtain central dust temperatures, $T_0$, in the range 6-12 K and find that, in the majority of cases, the radial density falloff at large radial distances is consistent with the $r^{-2}$ variation expected for Bonnor-Ebert spheres. Two of our cores exhibit a significantly steeper falloff, however, and since both appear to be gravitationally unstable, such behaviour may have implications for collapse models. We find a strong negative correlation between $T_0$ and peak column density, as expected if the dust is heated predominantly by the interstellar radiation field. At the temperatures we estimate for the core centres, carbon-bearing molecules freeze out as ice mantles on dust grains, and this behaviour is supported here by the lack of correspondence between our estimated core locations and the previously-published positions of H$^{13}$CO$^+$ peaks. On this basis, our observations suggest a sublimation-zone radius typically $sim 10^4$ AU. Comparison with previously-published N$_2$H$^+$ data at 8400 AU resolution, however, shows no evidence for N$_2$H$^+$ depletion at that resolution.
Context: At the end of their lives AGB stars are prolific producers of dust and gas. The details of this mass-loss process are still not understood very well. Herschel PACS and SPIRE spectra offer a unique way of investigating properties of AGB stars in general and the mass-loss process in particular. Methods: The HIPE software with the latest calibration is used to process the available PACS and SPIRE spectra of 40 evolved stars. The spectra are convolved with the response curves of the PACS and SPIRE bolometers and compared to the fluxes measured in imaging data of these sources. Custom software is used to identify lines in the spectra, and to determine the central wavelengths and line intensities. Standard molecular line databases are used to associate the observed lines. Because of the limited spectral resolution of the spectrometers several known lines are typically potential counterparts to any observed line. To help identifications the relative contributions in line intensity of the potential counterpart lines are listed for three characteristic temperatures based on LTE calculations and assuming optically thin emission. Result: The following data products are released: the reduced spectra, the lines that are measured in the spectra with wavelength, intensity, potential identifications, and the continuum spectra, i.e. the full spectra with all identified lines removed. As simple examples of how this data can be used in future studies we have fitted the continuum spectra with three power laws and find that the few OH/IR stars seem to have significantly steeper slopes than the other oxygen- and carbon-rich objects in the sample. As another example we constructed rotational diagrams for CO and fitted a two-component model to derive rotational temperatures.
The interstellar medium is enriched primarily by matter ejected from evolved low and intermediate mass stars. The outflows from these stars create a circumstellar envelope in which a rich gas-phase and dust-nucleation chemistry takes place. We observ ed the nearest carbon-rich evolved star, IRC+10216, using the PACS (55-210 {mu}m) and SPIRE (194-672 {mu}m) spectrometers on board Herschel. We find several tens of lines from SiS and SiO, including lines from the v=1 vibrational level. For SiS these transitions range up to J=124-123, corresponding to energies around 6700K, while the highest detectable transition is J=90-89 for SiO, which corresponds to an energy around 8400K. Both species trace the dust formation zone of IRC+10216, and the broad energy ranges involved in their detected transitions permit us to derive the physical properties of the gas and the particular zone in which each species has been formed. This allows us to check the accuracy of chemical thermodynamical equilibrium models and the suggested depletion of SiS and SiO due to accretion onto dust grains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا