ﻻ يوجد ملخص باللغة العربية
Functional neuroimaging measures how the brain responds to complex stimuli. However, sample sizes are modest, noise is substantial, and stimuli are high dimensional. Hence, direct estimates are inherently imprecise and call for regularization. We compare a suite of approaches which regularize via shrinkage: ridge regression, the elastic net (a generalization of ridge regression and the lasso), and a hierarchical Bayesian model based on small area estimation (SAE). We contrast regularization with spatial smoothing and combinations of smoothing and shrinkage. All methods are tested on functional magnetic resonance imaging (fMRI) data from multiple subjects participating in two different experiments related to reading, for both predicting neural response to stimuli and decoding stimuli from responses. Interestingly, when the regularization parameters are chosen by cross-validation independently for every voxel, low/high regularization is chosen in voxels where the classification accuracy is high/low, indicating that the regularization intensity is a good tool for identification of relevant voxels for the cognitive task. Surprisingly, all the regularization methods work about equally well, suggesting that beating basic smoothing and shrinkage will take not only clever methods, but also careful modeling.
Reading comprehension is a complex cognitive process involving many human brain activities. Plenty of works have studied the reading patterns and attention allocation mechanisms in the reading process. However, little is known about what happens in h
Rescaled spike and slab models are a new Bayesian variable selection method for linear regression models. In high dimensional orthogonal settings such models have been shown to possess optimal model selection properties. We review background theory a
Conversational machine reading (CMR) requires machines to communicate with humans through multi-turn interactions between two salient dialogue states of decision making and question generation processes. In open CMR settings, as the more realistic sc
Motivated by increasing trends of relating brain images to a clinical outcome of interest, we propose a functional domain selection (FuDoS) method that effectively selects subregions of the brain associated with the outcome. View each individuals bra
Recently, in the context of covariance matrix estimation, in order to improve as well as to regularize the performance of the Tylers estimator [1] also called the Fixed-Point Estimator (FPE) [2], a shrinkage fixed-point estimator has been introduced