ﻻ يوجد ملخص باللغة العربية
Reading comprehension is a complex cognitive process involving many human brain activities. Plenty of works have studied the reading patterns and attention allocation mechanisms in the reading process. However, little is known about what happens in human brain during reading comprehension and how we can utilize this information as implicit feedback to facilitate information acquisition performance. With the advances in brain imaging techniques such as EEG, it is possible to collect high-precision brain signals in almost real time. With neuroimaging techniques, we carefully design a lab-based user study to investigate brain activities during reading comprehension. Our findings show that neural responses vary with different types of contents, i.e., contents that can satisfy users information needs and contents that cannot. We suggest that various cognitive activities, e.g., cognitive loading, semantic-thematic understanding, and inferential processing, at the micro-time scale during reading comprehension underpin these neural responses. Inspired by these detectable differences in cognitive activities, we construct supervised learning models based on EEG features for two reading comprehension tasks: answer sentence classification and answer extraction. Results show that it is feasible to improve their performance with brain signals. These findings imply that brain signals are valuable feedback for enhancing human-computer interactions during reading comprehension.
Achieving human-level performance on some of Machine Reading Comprehension (MRC) datasets is no longer challenging with the help of powerful Pre-trained Language Models (PLMs). However, the internal mechanism of these artifacts still remains unclear,
Pre-trained language models achieves high performance on machine reading comprehension (MRC) tasks but the results are hard to explain. An appealing approach to make models explainable is to provide rationales for its decision. To facilitate supervis
Attention is a key mechanism for information selection in both biological brains and many state-of-the-art deep neural networks (DNNs). Here, we investigate whether humans and DNNs allocate attention in comparable ways when reading a text passage to
Reading comprehension (RC)---in contrast to information retrieval---requires integrating information and reasoning about events, entities, and their relations across a full document. Question answering is conventionally used to assess RC ability, in
Machine reading comprehension with unanswerable questions is a new challenging task for natural language processing. A key subtask is to reliably predict whether the question is unanswerable. In this paper, we propose a unified model, called U-Net, w