ﻻ يوجد ملخص باللغة العربية
We explore inflation via the effective potential of the minimal Wess-Zumino model, considering both the real and imaginary components of the complex field. Using transport techniques, we calculate the full allowed range of $n_s$, $r$ and $f_{rm NL}$ for different choices of the single free parameter, $v$, and present the probability distribution of these signatures given a simple choice for the prior distribution of initial conditions. Our work provides a case study of multi-field inflation in a simple but realistic setting, with important lessons that are likely to apply more generally. For example, we find that there are initial conditions consistent with observations of $n_s$ and $r$ for values of $v$ that would be excluded if only evolutions in the real field direction were to be considered, and that these may yield enhanced values of $f_{rm NL}$. Moreover, we find that initial conditions fixed at high energy density, where the potential is close to quartic in form, can still lead to evolutions in a concave region of the potential during the observable number of e-folds, as preferred by present data. The Wess-Zumino model therefore provides an illustration that multi-field dynamics must be taken into account when seeking to understand fully the phenomenology of such models of inflation.
We consider a lattice formulation of the four dimensional N=1 Wess-Zumino model in terms of the Ginsparg-Wilson relation. This formulation has an exact supersymmetry on the lattice. The lattice action is invariant under a deformed supersymmetric tran
The simplest two-field completion of natural inflation has a regime in which both fields are active and in which its predictions are within the Planck 1-$sigma$ confidence contour. We show this for the original model of natural inflation, in which in
We study dynamical supersymmetry breaking by non perturbative lattice techniques in a class of two-dimensional N=1 Wess-Zumino models. We work in the Hamiltonian formalism and analyze the phase diagram by analytical strong-coupling expansions and exp
We use analytical bootstrap techniques to study supersymmetric monodromy defects in the critical Wess-Zumino model. In preparation for our main result we first study two related systems which are interesting on their own: general monodromy defects (n
We investigate the breakdown of supersymmetry at finite temperature. While it has been proven that temperature always breaks supersymmetry, the nature of this breaking is less clear. On the one hand, a study of the Ward-Takahashi identities suggests