ﻻ يوجد ملخص باللغة العربية
We consider a lattice formulation of the four dimensional N=1 Wess-Zumino model in terms of the Ginsparg-Wilson relation. This formulation has an exact supersymmetry on the lattice. The lattice action is invariant under a deformed supersymmetric transformation which is non-linear in the scalar fields and it is determined by an iterative procedure in the coupling constant to all orders in perturbation theory. We also show that the corresponding Ward-Takahashi identity is satisfied at fixed lattice spacing. The calculation is performed in lattice perturbation theory up to order $g^3$ (two-loop) and the Ward-Takahashi identity (containing 110 connected non-tadpole Feynman diagrams) is satisfied at fixed lattice spacing thanks to this exact lattice supersymmetry.
A lattice formulation of the four dimensional Wess-Zumino model that uses Ginsparg-Wilson fermions and keeps exact supersymmetry is presented. The supersymmetry transformation that leaves invariant the action at finite lattice spacing is determined b
We study dynamical supersymmetry breaking by non perturbative lattice techniques in a class of two-dimensional N=1 Wess-Zumino models. We work in the Hamiltonian formalism and analyze the phase diagram by analytical strong-coupling expansions and exp
A new approach to the study of the transition point in a class of two dimensional Wess-Zumino models is presented. The method is based on the calculation of rigorous lower bounds on the ground state energy density in the infinite lattice limit. Such
We study dynamical supersymmetry breaking and the transition point by non-perturbative lattice techniques in a class of two-dimensional N=1 Wess-Zumino model. The method is based on the calculation of rigorous lower bounds on the ground state energy
We consider a lattice formulation of the four dimensional N=1 Wess-Zumino model that uses the Ginsparg-Wilson relation. This formulation has an exact supersymmetry on the lattice. We show that the corresponding Ward-Takahashi identity is satisfied, b