ترغب بنشر مسار تعليمي؟ اضغط هنا

On the New Intersection Theorem for totally reflexive modules

159   0   0.0 ( 0 )
 نشر من قبل Kamran Divaani-Aazar
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let (R,m,k) be a local ring. We establish a totally reflexive analogue of the New Intersection Theorem, provided for every totally reflexive R-module M, there is a big Cohen-Macaulay R-module B_M such that the socle of B_Motimes_RM is zero. When R is a quasi-specialization of a G-regular local ring or when M has complete intersection dimension zero, we show the existence of such a big Cohen-Macaulay R-module. It is conjectured that if R admits a non-zero Cohen-Macaulay module of finite Gorenstein dimension, then it is Cohen-Macaulay. We prove this conjecture if either R is a quasi-specialization of a G-regular local ring or a quasi-Buchsbaum local ring.



قيم البحث

اقرأ أيضاً

Let $(A,mathfrak{m})$ be a local complete intersection ring and let $I$ be an ideal in $A$. Let $M, N$ be finitely generated $A$-modules. Then for $l = 0,1$, the values $depth Ext^{2i+l}_A(M, N/I^nN)$ become independent of $i, n$ for $i,n gg 0$. We also show that if $mathfrak{p}$ is a prime ideal in $A$ then the $j^{th}$ Bass numbers $mu_jbig(mathfrak{p}, Ext^{2i+l}_A(M,N/{I^nN})big)$ has polynomial growth in $(n,i)$ with rational coefficients for all sufficiently large $(n,i)$.
In this paper, we define $m$-tail reflexive sheaves as reflexive sheaves on projective spaces with the simplest possible cohomology. We prove that the rank of any $m$-tail reflexive sheaf $mathcal{E}$ on $mathcal{P}^n$ is greater or equal to $ nm-m$. We completely describe $m$-tail reflexive sheaves on $mathcal{P}^n$ of minimal rank and we construct huge families of $m$-tail reflexive sheaves of higher rank.
Set $ A := Q/({bf z}) $, where $ Q $ is a polynomial ring over a field, and $ {bf z} = z_1,ldots,z_c $ is a homogeneous $ Q $-regular sequence. Let $ M $ and $ N $ be finitely generated graded $ A $-modules, and $ I $ be a homogeneous ideal of $ A $. We show that (1) $ mathrm{reg}left( mathrm{Ext}_A^{i}(M, I^nN) right) le rho_N(I) cdot n - f cdot leftlfloor frac{i}{2} rightrfloor + b mbox{ for all } i, n ge 0 $, (2) $ mathrm{reg}left( mathrm{Ext}_A^{i}(M,N/I^nN) right) le rho_N(I) cdot n - f cdot leftlfloor frac{i}{2} rightrfloor + b mbox{ for all } i, n ge 0 $, where $ b $ and $ b $ are some constants, $ f := mathrm{min}{ mathrm{deg}(z_j) : 1 le j le c } $, and $ rho_N(I) $ is an invariant defined in terms of reduction ideals of $ I $ with respect to $ N $. There are explicit examples which show that these inequalities are sharp.
161 - Susumu Oda 2011
The following is shown : Let $S={a_1,a_2,..,a_{2n}}$ be a subset of a totally ordered commutative semi-group $(G,*,leq)$ with $a_1leq a_2leq...leq a_{2n}$. Provided that a system of $n$ $a_{i_k} * a_{j_k} (a_{i_k}, a_{j_k} in G ; 1 leq k leq n)$, whe re all $2n$ elements in $S$ must be used, are less than an element $N (in G)$, then $a_1*a_{2n}, a_2*a_{2n-1},..., a_n*a_{n+1}$ are all less than $N$. This may be called the Upper Bounding Case. Moreover in the same way, we shall treat also the Lower Bounding Case.
125 - Mao Sheng , Zebao Zhang 2019
We establish a positive characteristic analogue of intersection cohomology for polarized variations of Hodge structure. This includes: a) the decomposition theorem for the intersection de Rham complex; b) the $E_1$-degeneration theorem for the inters ection de Rham complex of a periodic de Rham bundle: c) the Kodaira vanishing theorem for the intersection cohomology groups of a periodic Higgs bundle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا