ترغب بنشر مسار تعليمي؟ اضغط هنا

An asymptotic bound for Castelnuovo-Mumford regularity of certain Ext modules over graded complete intersection rings

106   0   0.0 ( 0 )
 نشر من قبل Dipankar Ghosh
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Set $ A := Q/({bf z}) $, where $ Q $ is a polynomial ring over a field, and $ {bf z} = z_1,ldots,z_c $ is a homogeneous $ Q $-regular sequence. Let $ M $ and $ N $ be finitely generated graded $ A $-modules, and $ I $ be a homogeneous ideal of $ A $. We show that (1) $ mathrm{reg}left( mathrm{Ext}_A^{i}(M, I^nN) right) le rho_N(I) cdot n - f cdot leftlfloor frac{i}{2} rightrfloor + b mbox{ for all } i, n ge 0 $, (2) $ mathrm{reg}left( mathrm{Ext}_A^{i}(M,N/I^nN) right) le rho_N(I) cdot n - f cdot leftlfloor frac{i}{2} rightrfloor + b mbox{ for all } i, n ge 0 $, where $ b $ and $ b $ are some constants, $ f := mathrm{min}{ mathrm{deg}(z_j) : 1 le j le c } $, and $ rho_N(I) $ is an invariant defined in terms of reduction ideals of $ I $ with respect to $ N $. There are explicit examples which show that these inequalities are sharp.



قيم البحث

اقرأ أيضاً

Let $(A,mathfrak{m})$ be a local complete intersection ring and let $I$ be an ideal in $A$. Let $M, N$ be finitely generated $A$-modules. Then for $l = 0,1$, the values $depth Ext^{2i+l}_A(M, N/I^nN)$ become independent of $i, n$ for $i,n gg 0$. We also show that if $mathfrak{p}$ is a prime ideal in $A$ then the $j^{th}$ Bass numbers $mu_jbig(mathfrak{p}, Ext^{2i+l}_A(M,N/{I^nN})big)$ has polynomial growth in $(n,i)$ with rational coefficients for all sufficiently large $(n,i)$.
393 - Dipankar Ghosh 2014
Let $A$ be a Noetherian standard $mathbb{N}$-graded algebra over an Artinian local ring $A_0$. Let $I_1,ldots,I_t$ be homogeneous ideals of $A$ and $M$ a finitely generated $mathbb{N}$-graded $A$-module. We prove that there exist two integers $k$ and $k$ such that [ mathrm{reg}(I_1^{n_1} cdots I_t^{n_t} M) leq (n_1 + cdots + n_t) k + k quadmbox{for all }~n_1,ldots,n_t in mathbb{N}. ]
This note has two goals. The first is to give a short and self contained introduction to the Castelnuovo-Mumford regularity for standard graded ring $R$ over a general base ring. The second is to present a simple and concise proof of a classical resu lt due to Cutkosky, Herzog and Trung and, independently, to Kodiyalam asserting that the regularity of powers of an homogeneous ideal $I$ of $R$ is eventually a linear function in $v$. Finally we show how the flexibility of the definition of the Castelnuovo-Mumford regularity over general base rings can be used to give a simple characterization of the ideals whose powers have a linear resolution in terms of the regularity of the Rees ring.
69 - Fred Rohrer 2020
The behaviour under coarsening functors of simple, entire, or reduced graded rings, of free graded modules over principal graded rings, of superfluous monomorphisms and of homological dimensions of graded modules, as well as adjoints of degree restriction functors, are investigated.
Let $(A,mathfrak{m})$ be a hypersurface ring with dimension $d$, and $M$ a MCM $A-$module with reduction no.2 and $mu(M)=2$ or $3$ then we have proved that depth$G(M)geq d-mu(M)+1$. If $e(A)=3$ and $mu(M)=4$ then in this case we have proved that dept h$G(M)geq d-3$. When $A = Q/(f)$ where $Q = k[[X_1,cdots, X_{d+1}]]$ then we give estimates for depth $G(M)$ in terms of minimal presentation of $M$. Our paper is the first systematic study of depth of associated graded modules of MCM modules over hypersurface rings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا