ﻻ يوجد ملخص باللغة العربية
Two polynomials $f, g in mathbb{F}[x_1, ldots, x_n]$ are called shift-equivalent if there exists a vector $(a_1, ldots, a_n) in mathbb{F}^n$ such that the polynomial identity $f(x_1+a_1, ldots, x_n+a_n) equiv g(x_1,ldots,x_n)$ holds. Our main result is a new randomized algorithm that tests whether two given polynomials are shift equivalent. Our algorithm runs in time polynomial in the circuit size of the polynomials, to which it is given black box access. This complements a previous work of Grigoriev (Theoretical Computer Science, 1997) who gave a deterministic algorithm running in time $n^{O(d)}$ for degree $d$ polynomials. Our algorithm uses randomness only to solve instances of the Polynomial Identity Testing (PIT) problem. Hence, if one could de-randomize PIT (a long-standing open problem in complexity) a de-randomization of our algorithm would follow. This establishes an equivalence between de-randomizing shift-equivalence testing and de-randomizing PIT (both in the black-box and the white-box setting). For certain restricted models, such as Read Once Branching Programs, we already obtain a deterministic algorithm using existing PIT results.
In this work, we introduce statistical testing under distributional shifts. We are interested in the hypothesis $P^* in H_0$ for a target distribution $P^*$, but observe data from a different distribution $Q^*$. We assume that $P^*$ is related to $Q^
The well-known DeMillo-Lipton-Schwartz-Zippel lemma says that $n$-variate polynomials of total degree at most $d$ over grids, i.e. sets of the form $A_1 times A_2 times cdots times A_n$, form error-correcting codes (of distance at least $2^{-d}$ prov
This paper deals with the partition function of the Ising model from statistical mechanics, which is used to study phase transitions in physical systems. A special case of interest is that of the Ising model with constant energies and external field.
We give a new framework for proving the existence of low-degree, polynomial approximators for Boolean functions with respect to broad classes of non-product distributions. Our proofs use techniques related to the classical moment problem and deviate
We investigate bisimulation equivalence on Petri nets under durational semantics. Our motivation was to verify the conjecture that in durational setting, the bisimulation equivalence checking problem becomes more tractable than in ordinary setting (w