ﻻ يوجد ملخص باللغة العربية
We give a new framework for proving the existence of low-degree, polynomial approximators for Boolean functions with respect to broad classes of non-product distributions. Our proofs use techniques related to the classical moment problem and deviate significantly from known Fourier-based methods, which require the underlying distribution to have some product structure. Our main application is the first polynomial-time algorithm for agnostically learning any function of a constant number of halfspaces with respect to any log-concave distribution (for any constant accuracy parameter). This result was not known even for the case of learning the intersection of two halfspaces without noise. Additionally, we show that in the smoothed-analysis setting, the above results hold with respect to distributions that have sub-exponential tails, a property satisfied by many natural and well-studied distributions in machine learning. Given that our algorithms can be implemented using Support Vector Machines (SVMs) with a polynomial kernel, these results give a rigorous theoretical explanation as to why many kernel methods work so well in practice.
We study a combinatorial problem called Minimum Maximal Matching, where we are asked to find in a general graph the smallest that can not be extended. We show that this problem is hard to approximate with a constant smaller than 2, assuming the Uniqu
We give improved pseudorandom generators (PRGs) for Lipschitz functions of low-degree polynomials over the hypercube. These are functions of the form psi(P(x)), where P is a low-degree polynomial and psi is a function with small Lipschitz constant. P
We consider the problem of estimating the support size of a discrete distribution whose minimum non-zero mass is at least $ frac{1}{k}$. Under the independent sampling model, we show that the sample complexity, i.e., the minimal sample size to achiev
This paper deals with the partition function of the Ising model from statistical mechanics, which is used to study phase transitions in physical systems. A special case of interest is that of the Ising model with constant energies and external field.
Two polynomials $f, g in mathbb{F}[x_1, ldots, x_n]$ are called shift-equivalent if there exists a vector $(a_1, ldots, a_n) in mathbb{F}^n$ such that the polynomial identity $f(x_1+a_1, ldots, x_n+a_n) equiv g(x_1,ldots,x_n)$ holds. Our main result