ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise parameters for both white dwarfs in the eclipsing binary CSS 41177

125   0   0.0 ( 0 )
 نشر من قبل Madelon Catherina Petra Bours
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present ULTRACAM photometry and X-Shooter spectroscopy of the eclipsing double white dwarf binary CSS 41177, the only such system that is also a double-lined spectroscopic binary. Combined modelling of the light curves and radial velocities yield masses and radii for both white dwarfs without the need to assume mass-radius relations. We find that the primary white dwarf has a mass of M1 = 0.38(2) Msun and a radius of R1 = 0.0222(4) Rsun. The secondary white dwarfs mass and radius are M2 = 0.32(1) Msun and R2 = 0.0207(4) Rsun, and its temperature and surface gravity (T2 = 11678(313) K, log(g2) = 7.32(2)) put it close to the white dwarf instability strip. However, we find no evidence for pulsations to roughly 0.5% relative amplitude. Both masses and radii are consistent with helium white dwarf models with thin hydrogen envelopes of 0.0001 Mstar. The two stars will merge in 1.14 Gyr due to angular momentum loss via gravitational wave emission.



قيم البحث

اقرأ أيضاً

Our aim is to precisely measure the physical parameters of the eclipsing binary IO Aqr and derive a distance to this system by applying a surface brightness - colour relation. Our motivation is to combine these parameters with future precise distance determinations from the GAIA space mission to derive precise surface brightness - colour relations for stars. We extensively used photometry from the Super-WASP and ASAS projects and precise radial velocities obtained from HARPS and CORALIE high-resolution spectra. We analysed light curves with the code JKTEBOP and radial velocity curves with the Wilson-Devinney program. We found that IO Aqr is a hierarchical triple system consisting of a double-lined short-period (P=2.37 d) spectroscopic binary and a low-luminosity and low-mass companion star orbiting the binary with a period of ~25000 d (~70 yr) on a very eccentric orbit. We derive high-precision (better than 1%) physical parameters of the inner binary, which is composed of two slightly evolved main-sequence stars (F5 V-IV + F6 V-IV) with masses of M1=1.569+/-0.004 and M2=1.655+/-0.004 M_sun and radii R1=2.19+/-0.02 and R2=2.49+/-0.02 R_sun. The companion is most probably a late K-type dwarf with mass ~0.6 M_sun. The distance to the system resulting from applying a (V-K) surface brightness - colour relation is 255+/-6(stat.)+/-6(sys.) pc, which agrees well with the Hipparcos value of 270+/-73 pc, but is more precise by a factor of eight.
118 - J. Nordhaus 2011
Since their initial discovery, the origin of isolated white dwarfs (WDs) with magnetic fields in excess of $sim$1 MG has remained a mystery. Recently, the formation of these high-field magnetic WDs has been observationally linked to strong binary int eractions incurred during post-main-sequence evolution. Planetary, brown dwarf or stellar companions located within a few AU of main-sequence stars may become engulfed during the primarys expansion off the main sequence. Sufficiently low-mass companions in-spiral inside a common envelope until they are tidally shredded near the natal white dwarf. Formation of an accretion disk from the disrupted companion provides a source of turbulence and shear which act to amplify magnetic fields and transport them to the WD surface. We show that these disk-generated fields explain the observed range of magnetic field strengths for isolated, high-field magnetic WDs. Additionally, we discuss a high-mass binary analogue which generates a strongly-magnetized WD core inside a pre-collapse, massive star. Subsequent core-collapse to a neutron star may produce a magnetar.
190 - Carles Badenes , Dan Maoz 2012
We use multi-epoch spectroscopy of about 4000 white dwarfs in the Sloan Digital Sky Survey to constrain the properties of the Galactic population of binary white dwarf systems and calculate their merger rate. With a Monte Carlo code, we model the dis tribution of DRVmax, the maximum radial velocity shift between exposures of the same star, as a function of the binary fraction within 0.05 AU, fbin, and the power-law index in the separation distribution at the end of the common envelope phase, alpha. Although there is some degeneracy between fbin and alpha, the the fifteen high DRVmax systems that we find constrain the combination of these parameters, which determines a white dwarf merger rate per unit stellar mass of 1.4(+3.4,-1.0)e-13 /yr/Msun (1-sigma limits). This is remarkably similar to the measured rate of Type Ia supernovae per unit stellar mass in Milky-Way-like Sbc galaxies. The rate of super-Chandrasekhar mergers is only 1.0(+1.6,-0.6)e-14 /yr/Msun. We conclude that there are not enough close binary white dwarf systems to reproduce the observed Type Ia SN rate in the classic double degenerate super-Chandrasekhar scenario. On the other hand, if sub-Chandrasekhar mergers can lead to Type Ia SNe, as recently suggested by some studies, they could make a major contribution to the overall Type Ia SN rate. Although unlikely, we cannot rule out contamination of our sample by M-dwarf binaries or non-Gaussian errors. These issues will be clarified in the near future by completing the follow-up of all 15 high DRVmax systems.
We present high-quality ULTRACAM photometry of the eclipsing detached double-white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely-low mass (< 0.2 Msun) helium-core white dwarf in a 5.6 hr orbit. To date such extremely-low mass WDs, which can have thin, stably-burning outer layers, have been modeled via poorly-constrained atmosphere and cooling calculations where uncertainties in the detailed structure can strongly influence the eventual fates of these systems when mass-transfer begins. With precise (individual precision ~1%) high-cadence (~2 s) multi-color photometry of multiple primary and secondary eclipses spanning >1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (~13%) systematic uncertainty in the primary He WDs mass. Over the full range of possible envelope thicknesses we find that our primary mass (0.136-0.162 Msun) and surface gravity (log(g)=6.32-6.38; radii are 0.0423-0.0433 Rsun) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Romer delay at 7 sigma significance, providing an additional weak constraint on the masses and limiting the eccentricity to e*cos(omega)= -4e-5 +/- 5e-5. Finally, we use multi-color data to constrain the secondarys effective temperature (7600+/-120 K) and cooling age (1.6-1.7 Gyr).
We present a critical review of the determination of fundamental parameters of white dwarfs discovered by the Gaia mission. We first reinterpret color-magnitude and color-color diagrams using photometric and spectroscopic information contained in the Montreal White Dwarf Database (MWDD), combined with synthetic magnitudes calculated from a self-consistent set of model atmospheres with various atmospheric compositions. The same models are then applied to measure the fundamental parameters of white dwarfs using the so-called photometric technique, which relies on the exquisite Gaia trigonometric parallax measurements, and photometric data from Pan-STARRS, SDSS, and Gaia. In particular, we discuss at length the systematic effects induced by these various photometric systems. We then study in great detail the mass distribution as a function of effective temperature for the white dwarfs spectroscopically identified in the MWDD, as well as for the white dwarf candidates discovered by Gaia. We pay particular attention to the assumed atmospheric chemical composition of cool, non-DA stars. We also briefly revisit the validity of the mass-radius relation for white dwarfs, and the recent discovery of the signature of crystallization in the Gaia color-magnitude diagram for DA white dwarfs. We finally present evidence that the core composition of most of these white dwarfs is, in bulk, a mixture of carbon and oxygen, an expected result from stellar evolution theory, but never empirically well established before.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا