ﻻ يوجد ملخص باللغة العربية
Since their initial discovery, the origin of isolated white dwarfs (WDs) with magnetic fields in excess of $sim$1 MG has remained a mystery. Recently, the formation of these high-field magnetic WDs has been observationally linked to strong binary interactions incurred during post-main-sequence evolution. Planetary, brown dwarf or stellar companions located within a few AU of main-sequence stars may become engulfed during the primarys expansion off the main sequence. Sufficiently low-mass companions in-spiral inside a common envelope until they are tidally shredded near the natal white dwarf. Formation of an accretion disk from the disrupted companion provides a source of turbulence and shear which act to amplify magnetic fields and transport them to the WD surface. We show that these disk-generated fields explain the observed range of magnetic field strengths for isolated, high-field magnetic WDs. Additionally, we discuss a high-mass binary analogue which generates a strongly-magnetized WD core inside a pre-collapse, massive star. Subsequent core-collapse to a neutron star may produce a magnetar.
Generally the virial theorem provides a relation between various components of energy integrated over a system. This helps us to understand the underlying equilibrium. Based on the virial theorem we can estimate, for example, the maximum allowed magn
Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries
The purpose of this thesis is to obtain more realistic equations of state to describe the matter forming magnetized white dwarfs, and use them to solve its structure equations. The equations of state are determined by considering the weak magnetic
We sketch a possible evolutionary scenario by which a highly magnetized super-Chandrasekhar white dwarf could be formed by accretion on to a commonly observed magnetized white dwarf. This is an exploratory study, when the physics in cataclysmic varia
Despite thousands of spectroscopic detections, only four isolated white dwarfs exhibit Balmer emission lines. The temperature inversion mechanism is a puzzle over 30 years old that has defied conventional explanations. One hypothesis is a unipolar in