ﻻ يوجد ملخص باللغة العربية
A factor $u$ of a word $w$ is a cover of $w$ if every position in $w$ lies within some occurrence of $u$ in $w$. A word $w$ covered by $u$ thus generalizes the idea of a repetition, that is, a word composed of exact concatenations of $u$. In this article we introduce a new notion of $alpha$-partial cover, which can be viewed as a relaxed variant of cover, that is, a factor covering at least $alpha$ positions in $w$. We develop a data structure of $O(n)$ size (where $n=|w|$) that can be constructed in $O(nlog n)$ time which we apply to compute all shortest $alpha$-partial covers for a given $alpha$. We also employ it for an $O(nlog n)$-time algorithm computing a shortest $alpha$-partial cover for each $alpha=1,2,ldots,n$.
We consider the problem of computing a shortest solid cover of an indeterminate string. An indeterminate string may contain non-solid symbols, each of which specifies a subset of the alphabet that could be present at the corresponding position. We al
We consider the problem of partial order production: arrange the elements of an unknown totally ordered set T into a target partially ordered set S, by comparing a minimum number of pairs in T. Special cases include sorting by comparisons, selection,
For a partial word $w$ the longest common compatible prefix of two positions $i,j$, denoted $lccp(i,j)$, is the largest $k$ such that $w[i,i+k-1]uparrow w[j,j+k-1]$, where $uparrow$ is the compatibility relation of partial words (it is not an equival
In 2013, Orlin proved that the max flow problem could be solved in $O(nm)$ time. His algorithm ran in $O(nm + m^{1.94})$ time, which was the fastest for graphs with fewer than $n^{1.06}$ arcs. If the graph was not sufficiently sparse, the fastest run
Index coding, or broadcasting with side information, is a network coding problem of most fundamental importance. In this problem, given a directed graph, each vertex represents a user with a need of information, and the neighborhood of each vertex re