ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the following geometric puzzle whose origin was traced to Allan Freedman cite{croft91,tutte69} in the 1960s by Dumitrescu and T{o}th cite{adriancasaba2011}. The puzzle has been popularized of late by Peter Winkler cite{Winkler2007}. Let $P_{n}$ be a set of $n$ points, including the origin, in the unit square $U = [0,1]^2$. The problem is to construct $n$ axis-parallel and mutually disjoint rectangles inside $U$ such that the bottom-left corner of each rectangle coincides with a point in $P_{n}$ and the total area covered by the rectangles is maximized. We would term the above rectangles as emph{anchored rectangles}. The longstanding conjecture has been that at least half of $U$ can be covered when anchored rectangles are properly placed. Dumitrescu and T{o}th cite{Dumitrescu2012} have shown a construction method that can cover at least $0.09121$, i.e., roughly $9%$ of the area.
Let $P_{n}$ be a set of $n$ points, including the origin, in the unit square $U = [0,1]^2$. We consider the problem of constructing $n$ axis-parallel and mutually disjoint rectangles inside $U$ such that the bottom-left corner of each rectangle coinc
In the present popular science paper we determine when a square can be dissected into rectangles similar to a given rectangle. The approach to the question is based on a physical interpretation using electrical networks. Only secondary school background is assumed in the paper.
We provide a tight result for a fundamental problem arising from packing squares into a circular container: The critical density of packing squares into a disk is $delta=frac{8}{5pi}approx 0.509$. This implies that any set of (not necessarily equal)
The Split Packing algorithm cite{splitpacking_ws, splitpackingsoda, splitpacking} is an offline algorithm that packs a set of circles into triangles and squares up to critical density. In this paper, we develop an online alternative to Split Packing
We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any $lambdageq 1$, the critical covering area $A^*(lambda)$ is the minimum value