ﻻ يوجد ملخص باللغة العربية
The Split Packing algorithm cite{splitpacking_ws, splitpackingsoda, splitpacking} is an offline algorithm that packs a set of circles into triangles and squares up to critical density. In this paper, we develop an online alternative to Split Packing to handle an online sequence of insertions and deletions, where the algorithm is allowed to reallocate circles into new positions at a cost proportional to their areas. The algorithm can be used to pack circles into squares and right angled triangles. If only insertions are considered, our algorithm is also able to pack to critical density, with an amortised reallocation cost of $O(clog frac{1}{c})$ for squares, and $O(c(1+s^2)log_{1+s^2}frac{1}{c})$ for right angled triangles, where $s$ is the ratio of the lengths of the second shortest side to the shortest side of the triangle, when inserting a circle of area $c$. When insertions and deletions are considered, we achieve a packing density of $(1-epsilon)$ of the critical density, where $epsilon>0$ can be made arbitrarily small, with an amortised reallocation cost of $O(c(1+s^2)log_{1+s^2}frac{1}{c} + cfrac{1}{epsilon})$.
We consider the problem of assigning radii to a given set of points in the plane, such that the resulting set of circles is connected, and the sum of radii is minimized. We show that the problem is polynomially solvable if a connectivity tree is give
We consider online packing problems where we get a stream of axis-parallel rectangles. The rectangles have to be placed in the plane without overlapping, and each rectangle must be placed without knowing the subsequent rectangles. The goal is to mini
We consider the online search problem in which a server starting at the origin of a $d$-dimensional Euclidean space has to find an arbitrary hyperplane. The best-possible competitive ratio and the length of the shortest curve from which each point on
Given a set of pairwise disjoint polygonal obstacles in the plane, finding an obstacle-avoiding Euclidean shortest path between two points is a classical problem in computational geometry and has been studied extensively. Previously, Hershberger and
A polyomino is a polygonal region with axis parallel edges and corners of integral coordinates, which may have holes. In this paper, we consider planar tiling and packing problems with polyomino pieces and a polyomino container $P$. We give two polyn