ﻻ يوجد ملخص باللغة العربية
Cascade seesaw mechanism generates neutrino mass at higher dimension (5+4n) operators through tree level diagram which bring the seesaw scale down to TeV and provide collider signatures within LHC reach. In particular, both Type-II scalar and Type-III heavy fermion seesaw signatures exist in such a scenario. Doubly charged scalar decays into diboson is dominant. We perform a thorough study on the LHC signals and the Standard Model background. We draw the conclusion that multilepton final state from interplay of doubly charged scalar and heavy fermion can provide distinguishable signatures from conventional seesaw mechanisms.
We discuss a mechanism where charged lepton masses are derived from one-loop diagrams mediated by particles in a dark sector including a dark matter candidate. We focus on a scenario where the muon and electron masses are generated at one loop with n
In this paper, we explore a new avenue to a natural explanation of the observed tiny neutrino masses with a dynamical realization of the three-generation structure in the neutrino sector. Under the magnetized background based on $T^2/Z_2$, matter con
Higgs signatures from the cascade decays of light stops are an interesting possibility in the next to minimal supersymmetric standard model (NMSSM). We investigate the potential reach of the light stop mass at the 13 TeV run of the LHC by means of fi
We present a general framework for models in which the lepton mixing matrix is the product of the maximal mixing matrix U_omega times a matrix constrained by a well-defined Z_2 symmetry. Our framework relies on neither supersymmetry nor non-renormali
It is shown that the specific charge conjugation transformation used to define the Majorana fermions in the conventional seesaw mechanism, namely $( u_{R})^{C}=Cbar{ u_{R}}^{T}$ for a chiral fermion $ u_{R}$ (and similarly for $ u_{L}$), is a hidden