ﻻ يوجد ملخص باللغة العربية
We discuss a mechanism where charged lepton masses are derived from one-loop diagrams mediated by particles in a dark sector including a dark matter candidate. We focus on a scenario where the muon and electron masses are generated at one loop with new ${cal O}(1)$ Yukawa couplings. The measured muon anomalous magnetic dipole moment, $(g-2)_mu$, can be explained in this framework. As an important prediction, the muon and electron Yukawa couplings can largely deviate from their standard model predictions, and such deviations can be tested at High-Luminosity LHC and future $e^+e^-$ colliders.
A mechanism has been suggested recently to generate the neutrino mass out of a dimension-seven operator. This is expected to relieve the tension between the occurrence of a tiny neutrino mass and the observability of other physics effects beyond it.
The canonical type-I seesaw model with three heavy Majorana neutrinos is one of the most natural extensions of the standard model (SM) to accommodate tiny Majorana masses of three ordinary neutrinos. At low-energy scales, Majorana neutrino masses and
Motivated by the recent muon anomalous magnetic moment (g-2) measurement at FERMILAB and non-zero neutrino masses, we propose a model based on the $SU(3)_C times SU(3)_L times U(1)_X$ (3-3-1) gauge symmetry. The most popular 3-3-1 models in the liter
We study the production and decay of fourth generation leptons at the Large Hadron Collider (LHC).We find that for charged leptons with masses under a few hundred GeV, the dominant collider signal comes from the production through a W-boson of a char
This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study Snowmass on the Mississippi, summarizing the current status and future experimental opportunities in muon and tau lepton studies and their se