ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized PDE estimates for KPZ equations through Hamilton-Jacobi-Bellman formalism

140   0   0.0 ( 0 )
 نشر من قبل Jeremie Unterberger M
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف J. Unterberger




اسأل ChatGPT حول البحث

We study in this series of articles the Kardar-Parisi-Zhang (KPZ) equation $$ partial_t h(t,x)= uDelta h(t,x)+lambda V(| abla h(t,x)|) +sqrt{D}, eta(t,x), qquad xin{mathbb{R}}^d $$ in $dge 1$ dimensions. The forcing term $eta$ in the right-hand side is a regularized white noise. The deposition rate $V$ is assumed to be isotropic and convex. Assuming $V(0)ge 0$, one finds $V(| abla h|)ltimes | abla h|^2$ for small gradients, yielding the equation which is most commonly used in the literature. The present article, a continuation of [24], is dedicated to a generalization of the PDE estimates obtained in the previous article to the case of a deposition rate $V$ with polynomial growth of arbitrary order at infinity, for which in general the Cole-Hopf transformation does not allow any more a comparison to the heat equation. The main tool here instead is the representation of $h$ as the solution of some minimization problem through the Hamilton-Jacobi-Bellman formalism. This sole representation turns out to be powerful enough to produce local or pointwise estimates in ${cal W}$-spaces of functions with locally bounded averages, as in [24], implying in particular global existence and uniqueness of solutions.



قيم البحث

اقرأ أيضاً

212 - Nikos Katzourakis 2014
This paper is a review of results on Optimisation which are perhaps not so standard in the PDE realm. To this end, we consider the problem of deriving the PDEs associated to the optimal control of a system of either ODEs or SDEs with respect to a vec tor-valued cost functional. Optimisation is considered with respect to a partial ordering generated by a given cone. Since in the vector case minima may not exist, we define vectorial value functions as (Pareto) minimals of the ordering. Our main objective is the derivation of the model PDEs which turn out to be parametric families of HJB single equations instead of systems of PDEs. However, this allows the use of the theory of Viscosity Solutions.
200 - Jeremie Unterberger 2013
We study in this series of articles the Kardar-Parisi-Zhang (KPZ) equation $$ partial_t h(t,x)= uDelta h(t,x)+lambda V(| abla h(t,x)|) +sqrt{D}, eta(t,x), qquad xin{mathbb{R}}^d $$ in $dge 1$ dimensions. The forcing term $eta$ in the right-hand side is a regularized white noise. The deposition rate $V$ is assumed to be isotropic and convex. Assuming $V(0)ge 0$, one finds $V(| abla h|)ltimes | abla h|^2$ for small gradients, yielding the equation which is most commonly used in the literature. The present article is dedicated to existence results and PDE estimates for the solution. Our results extend in a non-trivial way those previously obtained for the noiseless equation. We prove in particular a comparison principle for sub- and supersolutions of the KPZ equation in new functional spaces containing unbounded functions, implying existence and uniqueness. These new functional spaces made up of functions with locally bounded averages, generically called ${cal W}$-spaces thereafter, and which may be of interest for the study of parabolic equations in general, allow local or pointwise estimates. The comparison to the linear heat equation through a Cole-Hopf transform is an essential ingredient in the proofs, and our results are accordingly valid only for a function $V$ with at most quadratic growth at infinity.
153 - Said Benachour 2008
Sharp temporal decay estimates are established for the gradient and time derivative of solutions to a viscous Hamilton-Jacobi equation as well the associated Hamilton-Jacobi equation. Special care is given to the dependence of the estimates on the vi scosity. The initial condition being only continuous and either bounded or non-negative. The main requirement on the Hamiltonians is that it grows superlinearly or sublinearly at infinity, including in particular H(r) = r^p for r non-negatif and p positif and different from 1.
A tensor decomposition approach for the solution of high-dimensional, fully nonlinear Hamilton-Jacobi-Bellman equations arising in optimal feedback control of nonlinear dynamics is presented. The method combines a tensor train approximation for the v alue function together with a Newton-like iterative method for the solution of the resulting nonlinear system. The tensor approximation leads to a polynomial scaling with respect to the dimension, partially circumventing the curse of dimensionality. A convergence analysis for the linear-quadratic case is presented. For nonlinear dynamics, the effectiveness of the high-dimensional control synthesis method is assessed in the optimal feedback stabilization of the Allen-Cahn and Fokker-Planck equations with a hundred of variables.
Computing optimal feedback controls for nonlinear systems generally requires solving Hamilton-Jacobi-Bellman (HJB) equations, which are notoriously difficult when the state dimension is large. Existing strategies for high-dimensional problems often r ely on specific, restrictive problem structures, or are valid only locally around some nominal trajectory. In this paper, we propose a data-driven method to approximate semi-global solutions to HJB equations for general high-dimensional nonlinear systems and compute candidate optimal feedback controls in real-time. To accomplish this, we model solutions to HJB equations with neural networks (NNs) trained on data generated without discretizing the state space. Training is made more effective and data-efficient by leveraging the known physics of the problem and using the partially-trained NN to aid in adaptive data generation. We demonstrate the effectiveness of our method by learning solutions to HJB equations corresponding to the attitude control of a six-dimensional nonlinear rigid body, and nonlinear systems of dimension up to 30 arising from the stabilization of a Burgers-type partial differential equation. The trained NNs are then used for real-time feedback control of these systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا