ﻻ يوجد ملخص باللغة العربية
An analytical solution of the Dirac equation with a Cornell potential, with identical scalar and vectorial parts, is presented. The solution is obtained by using the linear potential solution, related to Airy functions, multiplied by another function to be determined. The energy levels are obtained and we notice that they obey a band structure.
We consider Yukawa theory in which the fermion mass is induced by a Higgs like scalar. In our model the fermion mass exhibits a temporal dependence, which naturally occurs in the early Universe setting. Assuming that the complex fermion mass changes
In this paper, we study the finite temperature-dependent Schr{o}dinger equation by using the Nikiforov-Uvarov method. We consider the sum of the Cornell, inverse quadratic, and harmonic-type potential as the potential part of the radial Schr{o}dinger
A general form of the effective mass Schrodinger equation is solved exactly for Hulthen potential. Nikiforov-Uvarov method is used to obtain energy eigenvalues and the corresponding wave functions. A free parameter is used in the transformation of the wave function.
The Schr{o}dinger equation is solved exactly for some well known potentials. Solutions are obtained reducing the Schr{o}dinger equation into a second order differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov
We present an exact solution to the Boltzmann equation which describes a system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion for arbitrary shear viscosity to entropy density ratio. This new solution is constructe