ﻻ يوجد ملخص باللغة العربية
We construct a lattice model for a cubic Kondo insulator consisting of one spin-degenerate $d$ and $f$ orbital at each lattice site. The odd-parity hybridization between the two orbitals permits us to obtain various trivial and topological insulating phases, which we classify in the presence of cubic symmetry. In particular, depending on the choice of our model parameters, we find a strong topological insulator phase with a band inversion at the $mathrm{X}$ point, modeling the situation potentially realized in SmB$_6$, and a topological crystalline insulator phase with trivial $mathbb{Z}_2$ indices but nonvanishing mirror Chern numbers. Using the Kotliar-Ruckenstein slave-boson scheme, we further demonstrate how increasing interactions among $f$ electrons can lead to topological phase transitions. Remarkably, for fixed band parameters, the $f$-orbital occupation number at the topological transitions is essentially independent of the interaction strength, thus yielding a robust criterion to discriminate between different phases.
The surface states of 3D topological insulators can exhibit Fermi surfaces of arbitrary area when the chemical potential is tuned away from the Dirac points. We focus on topological Kondo insulators and show that the surface states can acquire a fini
We study the quantum correction to conductivity on the surface of cubic topological Kondo insulators with multiple Dirac bands. We consider the model of time-reversal invariant disorder which induces the scattering of the electrons within the Dirac b
A fascinating type of symmetry-protected topological states of matter are topological Kondo insulators, where insulating behavior arises from Kondo screening of localized moments via conduction electrons, and non-trivial topology emerges from the str
Topological magnon insulators are the bosonic analogs of electronic topological insulators. They are manifested in magnetic materials with topologically nontrivial magnon bands as realized experimentally in a quasi-two-dimensional (quasi-2D) kagome f
The resistance of a conventional insulator diverges as temperature approaches zero. The peculiar low temperature resistivity saturation in the 4f Kondo insulator (KI) SmB6 has spurred proposals of a correlation-driven topological Kondo insulator (TKI