ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoinduced Topological Phase Transitions in Topological Magnon Insulators

87   0   0.0 ( 0 )
 نشر من قبل Solomon Akaraka Owerre
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. A. Owerre




اسأل ChatGPT حول البحث

Topological magnon insulators are the bosonic analogs of electronic topological insulators. They are manifested in magnetic materials with topologically nontrivial magnon bands as realized experimentally in a quasi-two-dimensional (quasi-2D) kagome ferromagnet Cu(1-3, bdc), and they also possess protected magnon edge modes. These topological magnetic materials can transport heat as well as spin currents, hence they can be useful for spintronic applications. Moreover, as magnons are charge-neutral spin-${bf 1}$ bosonic quasiparticles with a magnetic dipole moment, topological magnon materials can also interact with electromagnetic fields through the Aharonov-Casher effect. In this report, we study photoinduced topological phase transitions in intrinsic topological magnon insulators in the kagome ferromagnets. Using magnonic Floquet-Bloch theory, we show that by varying the light intensity, periodically driven intrinsic topological magnetic materials can be manipulated into different topological phases with different sign of the Berry curvatures and the thermal Hall conductivity. We further show that, under certain conditions, periodically driven gapped topological magnon insulators can also be tuned to synthetic gapless topological magnon semimetals with Dirac-Weyl magnon cones. We envision that this work will pave the way for interesting new potential practical applications in topological magnetic materials



قيم البحث

اقرأ أيضاً

70 - N. Sedlmayr 2019
The traditional concept of phase transitions has, in recent years, been widened in a number of interesting ways. The concept of a topological phase transition separating phases with a different ground state topology, rather than phases of different s ymmetries, has become a large widely studied field in its own right. Additionally an analogy between phase transitions, described by non-analyticities in the derivatives of the free energy, and non-analyticities which occur in dynamically evolving correlation functions has been drawn. These are called dynamical phase transitions and one is often now far from the equilibrium situation. In these short lecture notes we will give a brief overview of the history of these concepts, focusing in particular on the way in which dynamical phase transitions themselves can be used to shed light on topological phase transitions and topological phases. We will go on to focus, first, on the effect which the topologically protected edge states, which are one of the interesting consequences of topological phases, have on dynamical phase transitions. Second we will consider what happens in the experimentally relevant situations where the system begins either in a thermal state rather than the ground state, or exchanges particles with an external environment.
71 - S. A. Owerre 2018
A common feature of topological insulators is that they are characterized by topologically invariant quantity such as the Chern number and the $mathbb{Z}_2$ index. This quantity distinguishes a nontrivial topological system from a trivial one. A topo logical phase transition may occur when there are two topologically distinct phases, and it is usually defined by a gap closing point where the topologically invariant quantity is ill-defined. In this paper, we show that the magnon bands in the strained (distorted) kagome-lattice ferromagnets realize an example of a topological magnon phase transition in the realistic parameter regime of the system. When spin-orbit coupling (SOC) is neglected (i.e. no Dzyaloshinskii-Moriya interaction), we show that all three magnon branches are dispersive with no flat band, and there exists a critical point where tilted Dirac and semi-Dirac point coexist in the magnon spectra. The critical point separates two gapless magnon phases as opposed to the usual phase transition. Upon the inclusion of SOC, we realize a topological magnon phase transition point at the critical strain $delta_c=frac{1}{2}big[ 1-(D/J)^2big]$, where $D$ and $J$ denote the perturbative SOC and the Heisenberg spin exchange interaction respectively. It separates two distinct topological magnon phases with different Chern numbers for $delta<delta_c$ and for $delta>delta_c$. The associated anomalous thermal Hall conductivity develops an abrupt change at $delta_c$, due to the divergence of the Berry curvature in momentum space. The proposed topological magnon phase transition is experimentally feasible by applying external perturbations such as uniaxial strain or pressure.
110 - Chang-An Li , Bo Fu , Zi-Ang Hu 2020
We investigate disorder-driven topological phase transitions in quantized electric quadrupole insulators. We show that chiral symmetry can protect the quantization of the quadrupole moment $q_{xy}$, such that the higher-order topological invariant is well-defined even when disorder has broken all crystalline symmetries. Moreover, nonvanishing $q_{xy}$ and consequent corner modes can be induced from a trivial insulating phase by disorder that preserves chiral symmetry. The critical points of such topological phase transitions are marked by the occurrence of extended boundary states even in the presence of strong disorder. We provide a systematic characterization of these disorder-driven topological phase transitions from both bulk and boundary descriptions.
192 - Q. M. Liu , D. Wu , Z. A. Li 2021
Utrafast control of material physical properties represents a rapid developing field in condensed matter physics. Yet, accessing to the long-lived photoinduced electronic states is still in its early stage, especially with respect to an insulator to metal phase transition. Here, by combing transport measurement with ultrashort photoexcitation and coherent phonon spectroscopy, we report on photoinduced multistage phase transitions in Ta2NiSe5. Upon excitation by weak pulse intensity, the system is triggered to a short-lived state accompanied by a structural change. Further increasing the excitation intensity beyond a threshold, a photoinduced steady new state is achieved where the resistivity drops by more than four orders at temperature 50 K. This new state is thermally stable up to at least 350 K and exhibits the lattice structure different from any of the thermally accessible equilibrium states. Transmission electron microscopy reveals an in-chain Ta atom displacement in the photoinduced new structure phase. We also found that nano-sheet samples with the thickness less than the optical penetration depth are required for attaining a complete transition.
131 - Kenji Yonemitsu 2005
Theories of photoinduced phase transitions have developed along with the progress in experimental studies, especially concerning their nonlinear characters and transition dynamics. At an early stage, paths from photoinduced local structural distortio ns to global ones are explained in classical statistical models. Their dynamics are governed by transition probabilities and inevitably stochastic, but they were sufficient to describe coarse-grained time evolutions. Recently, however, a variety of dynamics including ultrafast ones are observed in different electronic states. They are explained in relevant electronic models. In particular, a coherent lattice oscillation and coherent motion of a macroscopic domain boundary need appropriate interactions among electrons and lattice displacements. Furthermore, some transitions proceed almost in one direction, which can be explained by considering relevant electronic processes. We describe the history of theories of photoinduced phase transitions and discuss a future perspective.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا