ﻻ يوجد ملخص باللغة العربية
Recent experiments have reached detection efficiencies sufficient to close the detection loophole, testing the Clauser-Horne (CH) version of Bells inequality. For a similar future experiment to be completely loophole-free, it will be important to have discrete experimental trials with randomized measurement settings for each trial, and the statistical analysis should not overlook the possibility of a local state varying over time with possible dependence on earlier trials (the memory loophole). In this paper, a mathematical model for such a CH experiment is presented, and a method for statistical analysis that is robust to memory effects is introduced. Additionally, a new method for calculating exact p-values for martingale-based statistics is described; previously, only non-sharp upper bounds derived from the Azuma-Hoeffding inequality have been available for such statistics. This improvement decreases the required number of experimental trials to demonstrate non-locality. The statistical techniques are applied to the data of recent experiments and found to perform well.
The Clauser-Horne-Shimony-Holt (CHSH) inequality is a constraint that local theories must obey. Quantum Mechanics predicts a violation of this inequality in certain experimental settings. Treatments of this subject frequently make simplifying assumpt
Quantum nonlocality, one of the most important features of quantum mechanics, is normally connected in experiments with the violation of Bell-Clauser-Horne (Bell-CH) inequalities. We propose effective methods for the rearrangement and linear inequali
We propose a geometric multiparty extension of Clauser-Horne (CH) inequality. The standard CH inequality can be shown to be an implication of the fact that statistical separation between two events, $A$ and $B$, defined as $P(Aoplus B)$, where $Aoplu
We study the relation between the maximal violation of Svetlichnys inequality and the mixedness of quantum states and obtain the optimal state (i.e., maximally nonlocal mixed states, or MNMS, for each value of linear entropy) to beat the Clauser-Horn
Correlation self-testing of a theory addresses the question of whether we can identify the set of correlations realisable in a theory from its performance in a particular information processing task. Applied to quantum theory it aims to identify an i