ﻻ يوجد ملخص باللغة العربية
We propose a geometric multiparty extension of Clauser-Horne (CH) inequality. The standard CH inequality can be shown to be an implication of the fact that statistical separation between two events, $A$ and $B$, defined as $P(Aoplus B)$, where $Aoplus B=(A-B)cup(B-A)$, satisfies the axioms of a distance. Our extension for tripartite case is based on triangle inequalities for the statistical separations of three probabilistic events $P(Aoplus B oplus C)$. We show that Mermin inequality can be retrieved from our extended CH inequality for three subsystems. With our tripartite CH inequality, we investigate quantum violations by GHZ-type and W-type states. Our inequalities are compared to another type, so-called $N$-site CH inequality. In addition we argue how to generalize our method for more subsystems and measurement settings. Our method can be used to write down several Bell-type inequalities in a systematic manner.
We investigate quantum nonlocality of a single-photon entangled state under feasible measurement techniques consisting of on-off and homodyne detections along with unitary operations of displacement and squeezing. We test for a potential violation of
The Clauser-Horne-Shimony-Holt (CHSH) inequality is a constraint that local theories must obey. Quantum Mechanics predicts a violation of this inequality in certain experimental settings. Treatments of this subject frequently make simplifying assumpt
Quantum nonlocality, one of the most important features of quantum mechanics, is normally connected in experiments with the violation of Bell-Clauser-Horne (Bell-CH) inequalities. We propose effective methods for the rearrangement and linear inequali
We study the relation between the maximal violation of Svetlichnys inequality and the mixedness of quantum states and obtain the optimal state (i.e., maximally nonlocal mixed states, or MNMS, for each value of linear entropy) to beat the Clauser-Horn
Correlation self-testing of a theory addresses the question of whether we can identify the set of correlations realisable in a theory from its performance in a particular information processing task. Applied to quantum theory it aims to identify an i