ترغب بنشر مسار تعليمي؟ اضغط هنا

Genome-wide scan of 29,141 African Americans finds no evidence of selection since admixture

136   0   0.0 ( 0 )
 نشر من قبل Gaurav Bhatia
 تاريخ النشر 2013
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We scanned through the genomes of 29,141 African Americans, searching for loci where the average proportion of African ancestry deviates significantly from the genome-wide average. We failed to find any genome-wide significant deviations, and conclude that any selection in African Americans since admixture is sufficiently weak that it falls below the threshold of our power to detect it using a large sample size. These results stand in contrast to the findings of a recent study of selection in African Americans. That study, which had 15 times fewer samples, reported six loci with significant deviations. We show that the discrepancy is likely due to insufficient correction for multiple hypothesis testing in the previous study. The same study reported 14 loci that showed greater population differentiation between African Americans and Nigerian Yoruba than would be expected in the absence of natural selection. Four such loci were previously shown to be genome-wide significant and likely to be affected by selection, but we show that most of the 10 additional loci are likely to be false positives. Additionally, the most parsimonious explanation for the loci that have significant evidence of unusual differentiation in frequency between Nigerians and Africans Americans is selection in Africa prior to their forced migration to the Americas.



قيم البحث

اقرأ أيضاً

The role of positive selection in human evolution remains controversial. On the one hand, scans for positive selection have identified hundreds of candidate loci and the genome-wide patterns of polymorphism show signatures consistent with frequent po sitive selection. On the other hand, recent studies have argued that many of the candidate loci are false positives and that most apparent genome-wide signatures of adaptation are in fact due to reduction of neutral diversity by linked recurrent deleterious mutations, known as background selection. Here we analyze human polymorphism data from the 1,000 Genomes project (Abecasis et al. 2012) and detect signatures of pervasive positive selection once we correct for the effects of background selection. We show that levels of neutral polymorphism are lower near amino acid substitutions, with the strongest reduction observed specifically near functionally consequential amino acid substitutions. Furthermore, amino acid substitutions are associated with signatures of recent adaptation that should not be generated by background selection, such as the presence of unusually long and frequent haplotypes and specific distortions in the site frequency spectrum. We use forward simulations to show that the observed signatures require a high rate of strongly adaptive substitutions in the vicinity of the amino acid changes. We further demonstrate that the observed signatures of positive selection correlate more strongly with the presence of regulatory sequences, as predicted by ENCODE (Gerstein et al. 2012), than the positions of amino acid substitutions. Our results establish that adaptation was frequent in human evolution and provide support for the hypothesis of King and Wilson (King and Wilson 1975) that adaptive divergence is primarily driven by regulatory changes.
The Roma people, living throughout Europe, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1000-1500 years ago. Geneti c inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs). We estimate that the Roma harbor about 80% West Eurasian ancestry-deriving from a combination of European and South Asian sources- and that the date of admixture of South Asian and European ancestry was about 850 years ago. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which we hypothesize was followed by a major demographic expansion once the population arrived in Europe.
118 - Marina Rafajlovic 2013
Tests of the neutral evolution hypothesis are usually built on the standard null model which assumes that mutations are neutral and population size remains constant over time. However, it is unclear how such tests are affected if the last assumption is dropped. Here, we extend the unifying framework for tests based on the site frequency spectrum, introduced by Achaz and Ferretti, to populations of varying size. A key ingredient is to specify the first two moments of the frequency spectrum. We show that these moments can be determined analytically if a population has experienced two instantaneous size changes in the past. We apply our method to data from ten human populations gathered in the 1000 genomes project, estimate their demographies and define demography-adjust
We discuss two different ways of chromosomes and genomes evolution. Purifying selection dominates in large panmictic populations, where Mendelian law of independent gene assortment is valid. If the populations are small, recombination processes are n ot effective enough to ensure an independent assortment of linked genes and larger clusters of genes could be inherited as the genetic units. There are whole clusters of genes which tend to complement in such conditions instead of single pairs of alleles like in the case of purifying selection. Computer simulations have shown that switching in-between complementation and purification strategies has a character of a phase transition. This is also responsible for specific distribution of recombination events observed along eukaryotic chromosomes - higher recombination rate is observed in subtelomeric regions than in central parts of chromosomes - for sympatric speciation and probably for non-monotonous relation between reproduction potential and genetic distance between parents.
73 - Shai Carmi , James Xue , 2015
Admixed populations are formed by the merging of two or more ancestral populations, and the ancestry of each locus in an admixed genome derives from either source. Consider a simple pulse admixture model, where populations A and B merged t generation s ago without subsequent gene flow. We derive the distribution of the proportion of an admixed chromosome that has A (or B) ancestry, as a function of the chromosome length L, t, and the initial contribution of the A source, m. We demonstrate that these results can be used for inference of the admixture parameters. For more complex admixture models, we derive an expression in Laplace space for the distribution of ancestry proportions that depends on having the distribution of the lengths of segments of each ancestry. We obtain explicit results for the special case of a two-wave admixture model, where population A contributed additional migrants in one of the generations between the present and the initial admixture event. Specifically, we derive formulas for the distribution of A and B segment lengths and numerical results for the distribution of ancestry proportions. We show that for recent admixture, data generated under a two-wave model can hardly be distinguished from that generated under a pulse model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا