ترغب بنشر مسار تعليمي؟ اضغط هنا

Genome wide signals of pervasive positive selection in human evolution

335   0   0.0 ( 0 )
 نشر من قبل David Enard
 تاريخ النشر 2013
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The role of positive selection in human evolution remains controversial. On the one hand, scans for positive selection have identified hundreds of candidate loci and the genome-wide patterns of polymorphism show signatures consistent with frequent positive selection. On the other hand, recent studies have argued that many of the candidate loci are false positives and that most apparent genome-wide signatures of adaptation are in fact due to reduction of neutral diversity by linked recurrent deleterious mutations, known as background selection. Here we analyze human polymorphism data from the 1,000 Genomes project (Abecasis et al. 2012) and detect signatures of pervasive positive selection once we correct for the effects of background selection. We show that levels of neutral polymorphism are lower near amino acid substitutions, with the strongest reduction observed specifically near functionally consequential amino acid substitutions. Furthermore, amino acid substitutions are associated with signatures of recent adaptation that should not be generated by background selection, such as the presence of unusually long and frequent haplotypes and specific distortions in the site frequency spectrum. We use forward simulations to show that the observed signatures require a high rate of strongly adaptive substitutions in the vicinity of the amino acid changes. We further demonstrate that the observed signatures of positive selection correlate more strongly with the presence of regulatory sequences, as predicted by ENCODE (Gerstein et al. 2012), than the positions of amino acid substitutions. Our results establish that adaptation was frequent in human evolution and provide support for the hypothesis of King and Wilson (King and Wilson 1975) that adaptive divergence is primarily driven by regulatory changes.



قيم البحث

اقرأ أيضاً

The Roma people, living throughout Europe, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1000-1500 years ago. Geneti c inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs). We estimate that the Roma harbor about 80% West Eurasian ancestry-deriving from a combination of European and South Asian sources- and that the date of admixture of South Asian and European ancestry was about 850 years ago. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which we hypothesize was followed by a major demographic expansion once the population arrived in Europe.
We discuss two different ways of chromosomes and genomes evolution. Purifying selection dominates in large panmictic populations, where Mendelian law of independent gene assortment is valid. If the populations are small, recombination processes are n ot effective enough to ensure an independent assortment of linked genes and larger clusters of genes could be inherited as the genetic units. There are whole clusters of genes which tend to complement in such conditions instead of single pairs of alleles like in the case of purifying selection. Computer simulations have shown that switching in-between complementation and purification strategies has a character of a phase transition. This is also responsible for specific distribution of recombination events observed along eukaryotic chromosomes - higher recombination rate is observed in subtelomeric regions than in central parts of chromosomes - for sympatric speciation and probably for non-monotonous relation between reproduction potential and genetic distance between parents.
Genetic studies of human traits have revolutionized our understanding of the variation between individuals, and opened the door for numerous breakthroughs in biology, medicine and other scientific fields. And yet, the ultimate promise of this area of research is still not fully realized. In this review, we highlight the major open problems that need to be solved to improve our understanding of the genetic variation underlying human traits, and by discussing these challenges provide a primer to the field. Our focus is on concrete analytical problems, both conceptual and technical in nature. We cover general issues in genetic studies such as population structure, epistasis and gene-environment interactions, data-related issues such as ethnic diversity and rare genetic variants, and specific challenges related to heritability estimates, genetic association studies and polygenic risk scores. We emphasize the interconnectedness of these open problems and suggest promising avenues to address them.
We scanned through the genomes of 29,141 African Americans, searching for loci where the average proportion of African ancestry deviates significantly from the genome-wide average. We failed to find any genome-wide significant deviations, and conclud e that any selection in African Americans since admixture is sufficiently weak that it falls below the threshold of our power to detect it using a large sample size. These results stand in contrast to the findings of a recent study of selection in African Americans. That study, which had 15 times fewer samples, reported six loci with significant deviations. We show that the discrepancy is likely due to insufficient correction for multiple hypothesis testing in the previous study. The same study reported 14 loci that showed greater population differentiation between African Americans and Nigerian Yoruba than would be expected in the absence of natural selection. Four such loci were previously shown to be genome-wide significant and likely to be affected by selection, but we show that most of the 10 additional loci are likely to be false positives. Additionally, the most parsimonious explanation for the loci that have significant evidence of unusual differentiation in frequency between Nigerians and Africans Americans is selection in Africa prior to their forced migration to the Americas.
The human microbiome is the ensemble of genes in the microbes that live inside and on the surface of humans. Because microbial sequencing information is now much easier to come by than phenotypic information, there has been an explosion of sequencing and genetic analysis of microbiome samples. Much of the analytical work for these sequences involves phylogenetics, at least indirectly, but methodology has developed in a somewhat different direction than for other applications of phylogenetics. In this paper I review the field and its methods from the perspective of a phylogeneticist, as well as describing current challenges for phylogenetics coming from this type of work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا