ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling and analysis of a phase field system for damage and phase separation processes in solids

77   0   0.0 ( 0 )
 نشر من قبل Christiane Kraus
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we analytically investigate a multi-component system for describing phase separation and damage processes in solids. The model consists of a parabolic diffusion equation of fourth order for the concentration coupled with an elliptic system with material dependent coefficients for the strain tensor and a doubly nonlinear differential inclusion for the damage function. The main aim of this paper is to show existence of weak solutions for the introduced model, where, in contrast to existing damage models in the literature, different elastic properties of damaged and undamaged material are regarded. To prove existence of weak solutions for the introduced model, we start with an approximation system. Then, by passing to the limit, existence results of weak solutions for the proposed model are obtained via suitable variational techniques.



قيم البحث

اقرأ أيضاً

In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature (cf., e.g., [C. Heinemann, C. Kraus: Existence results of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage. Adv. Math. Sci. Appl. 21 (2011), 321--359] and [C. Heinemann, C. Kraus: Existence results for diffuse interface models describing phase separation and damage. European J. Appl. Math. 24 (2013), 179--211]), we encompass in the model thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More in particular, we prove the existence of entropic weak solutions, resorting to a solvability concept first introduced in [E. Feireisl: Mathematical theory of compressible, viscous, and heat conducting fluids. Comput. Math. Appl. 53 (2007), 461--490] in the framework of Fourier-Navier-Stokes systems and then recently employed in [E. Feireisl, H. Petzeltova, E. Rocca: Existence of solutions to a phase transition model with microscopic movements. Math. Methods Appl. Sci. 32 (2009), 1345--1369], [E. Rocca, R. Rossi: Entropic solutions to a thermodynamically consistent PDE system for phase transitions and damage. SIAM J. Math. Anal., 47 (2015), 2519--2586] for the study of PDE systems for phase transition and damage. Our global-in-time existence result is obtained by passing to the limit in a carefully devised time-discretization scheme.
We present a phenomenological model based on the thermodynamics of the phase separated state of manganites, accounting for its static and dynamic properties. Through calorimetric measurements on La$_{0.225}$Pr$_{0.40}$Ca$ _{0.375}$MnO$_{3}$ the low t emperature free energies of the coexisting ferromagnetic and charge ordered phases are evaluated. The phase separated state is modeled by free energy densities uniformly spread over the sample volume. The calculations contemplate the out of equilibrium features of the coexisting phase regime, to allow a comparison between magnetic measurements and the predictions of the model. A phase diagram including the static and dynamic properties of the system is constructed, showing the existence of blocked and unblocked regimes which are characteristics of the phase separated state in manganites.
In this paper we study a distributed control problem for a phase-field system of conserved type with a possibly singular potential. We mainly handle two cases: the case of a viscous Cahn-Hilliard type dynamics for the phase variable in case of a loga rithmic-type potential with bounded domain and the case of a standard Cahn-Hilliard equation in case of a regular potential with unbounded domain, like the classical double-well potential, for example. Necessary first order conditions of optimality are derived under natural assumptions on the data.
We consider a model for the evolution of damage in elastic materials originally proposed by Michel Fremond. For the corresponding PDE system we prove existence and uniqueness of a local in time strong solution. The main novelty of our result stands i n the fact that, differently from previous contributions, we assume no occurrence of any type of regularizing terms.
In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn-Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we ex tend some recent results obtained in the preprint arXiv:1401.5943, letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا