ﻻ يوجد ملخص باللغة العربية
We describe our custom processing of the entire Wide-field Infrared Survey Explorer (WISE) 12 micron imaging data set, and present a high-resolution, full-sky map of diffuse Galactic dust emission that is free of compact sources and other contaminating artifacts. The principal distinctions between our resulting co-added images and the WISE Atlas stacks are our removal of compact sources, including their associated electronic and optical artifacts, and our preservation of spatial modes larger than 1.5 degrees. We provide access to the resulting full-sky map via a set of 430 12.5 degree by 12.5 degree mosaics. These stacks have been smoothed to 15 resolution and are accompanied by corresponding coverage maps, artifact images, and bit-masks for point sources, resolved compact sources, and other defects. When combined appropriately with other mid-infrared and far-infrared data sets, we expect our WISE 12 micron co-adds to form the basis for a full-sky dust extinction map with angular resolution several times better than Schlegel et al. (1998).
After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 {mu}m, 4.6 {mu}m, 12 {mu}m and 22 {mu}m. We have begun a dedicated WISE High Resolution Galaxy Atlas (WHRGA) project to fully c
Technology has advanced to the point that it is possible to image the entire sky every night and process the data in real time. The sky is hardly static: many interesting phenomena occur, including variable stationary objects such as stars or QSOs, t
The Infrared Spectrograph (IRS) on board the Spitzer Space Telescope observed about 15,000 objects during the cryogenic mission lifetime. Observations provided low-resolution (R~60-127) spectra over ~5-38um and high-resolution (R~600) spectra over ~1
We present a high-resolution (R ~ 50 000) atlas of a uranium-neon (U/Ne) hollow-cathode spectrum in the H-band (1454 nm to 1638 nm) for the calibration of near-infrared spectrographs. We obtained this U/Ne spectrum simultaneously with a laser-frequen
Emission from the interstellar medium can be a significant contaminant of measurements of the intensity and polarization of the cosmic microwave background (CMB). For planning CMB observations, and for optimizing foreground-cleaning algorithms, a des