ترغب بنشر مسار تعليمي؟ اضغط هنا

ATLAS: A High-Cadence All-Sky Survey System

151   0   0.0 ( 0 )
 نشر من قبل John Tonry
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Technology has advanced to the point that it is possible to image the entire sky every night and process the data in real time. The sky is hardly static: many interesting phenomena occur, including variable stationary objects such as stars or QSOs, transient stationary objects such as supernovae or M dwarf flares, and moving objects such as asteroids and the stars themselves. Funded by NASA, we have designed and built a sky survey system for the purpose of finding dangerous near-Earth asteroids (NEAs). This system, the Asteroid Terrestrial-impact Last Alert System (ATLAS), has been optimized to produce the best survey capability per unit cost, and therefore is an efficient and competitive system for finding potentially hazardous asteroids (PHAs) but also for tracking variables and finding transients. While carrying out its NASA mission, ATLAS now discovers more bright ($m < 19$) supernovae candidates than any ground based survey, frequently detecting very young explosions due to its 2 day cadence. ATLAS discovered the afterglow of a gamma-ray burst independent of the high energy trigger and has released a variable star catalogue of 5$times10^{6}$ sources. This, the first of a series of articles describing ATLAS, is devoted to the design and performance of the ATLAS system. Subsequent articles will describe in more detail the software, the survey strategy, ATLAS-derived NEA population statistics, transient detections, and the first data release of variable stars and transient lightcurves.



قيم البحث

اقرأ أيضاً

The Asteroid Terrestrial-impact Last Alert System (ATLAS) observes most of the sky every night in search of dangerous asteroids. Its data are also used to search for photometric variability, where sensitivity to variability is limited by photometric accuracy. Since each exposure spans 7.6 deg corner to corner, variations in atmospheric transparency in excess of 0.01 mag are common, and 0.01 mag photometry cannot be achieved by using a constant flat field calibration image. We therefore have assembled an all-sky reference catalog of approximately one billion stars to m~19 from a variety of sources to calibrate each exposures astrometry and photometry. Gaia DR2 is the source of astrometry for this ATLAS Refcat2. The sources of g, r, i, z photometry include Pan-STARRS DR1, the ATLAS Pathfinder photometry project, ATLAS re-flattened APASS data, SkyMapper DR1, APASS DR9, the Tycho-2 catalog, and the Yale Bright Star Catalog. We have attempted to make this catalog at least 99% complete to m<19, including the brightest stars in the sky. We believe that the systematic errors are no larger than 5 millimag RMS, although errors are as large as 20 millimag in small patches near the galactic plane.
The LSST survey was designed to deliver transformative results for four primary objectives: constraining dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. While the L SST Wide-Fast-Deep survey and accompanying Deep Drilling and mini-surveys will be ground-breaking for each of these areas, there remain competing demands on the survey area, depth, and temporal coverage amid a desire to maximize all three. In this white paper, we seek to address a principal source of tension between the different LSST science collaborations, that of the survey area and depth that they each need in the parts of the sky that they care about. We present simple tools which can be used to explore trades between the area surveyed by LSST and the number of visits available per field and then use these tools to propose a change to the baseline survey strategy. Specifically, we propose to reconfigure the WFD footprint to consist of low-extinction regions (limited by galactic latitude), with the number of visits per field in WFD limited by the LSST Science Requirements Document (SRD) design goal, and suggest assignment of the remaining LSST visits to the full visible LSST sky. This proposal addresses concerns with the WFD footprint raised by the DESC (as 25 percent of the current baseline WFD region is not usable for dark energy science due to MW dust extinction), eases the time required for the NES and SCP mini-surveys (since in our proposal they would partially fall into the modified WFD footprint), raises the number of visits previously assigned to the GP region, and increases the overlap with DESI and other Northern hemisphere follow-up facilities. This proposal alleviates many of the current concerns of Science Collaborations that represent the four scientific pillars of LSST and provides a Big Sky approach to cadence diplomacy.
155 - Joshua S. Bloom 2009
We are proposing to conduct a multicolor, synoptic infrared (IR) imaging survey of the Northern sky with a new, dedicated 6.5-meter telescope at San Pedro Martir (SPM) Observatory. This initiative is being developed in partnership with astronomy inst itutions in Mexico and the University of California. The 4-year, dedicated survey, planned to begin in 2017, will reach more than 100 times deeper than 2MASS. The Synoptic All-Sky Infrared (SASIR) Survey will reveal the missing sample of faint red dwarf stars in the local solar neighborhood, and the unprecedented sensitivity over such a wide field will result in the discovery of thousands of z ~ 7 quasars (and reaching to z > 10), allowing detailed study (in concert with JWST and Giant Segmented Mirror Telescopes) of the timing and the origin(s) of reionization. As a time-domain survey, SASIR will reveal the dynamic infrared universe, opening new phase space for discovery. Synoptic observations of over 10^6 supernovae and variable stars will provide better distance measures than optical studies alone. SASIR also provides significant synergy with other major Astro2010 facilities, improving the overall scientific return of community investments. Compared to optical-only measurements, IR colors vastly improve photometric redshifts to z ~ 4, enhancing dark energy and dark matter surveys based on weak lensing and baryon oscillations. The wide field and ToO capabilities will enable a connection of the gravitational wave and neutrino universe - with events otherwise poorly localized on the sky - to transient electromagnetic phenomena.
This paper develops a general observing strategy for missions performing all-sky surveys, where a single spacecraft maps the celestial sphere subject to realistic constraints. The strategy is flexible such that targeted observations and variable cove rage requirements can be achieved. This paper focuses on missions operating in Low Earth Orbit, where the thermal and stray-light constraints due to the Sun, Earth, and Moon result in interacting and dynamic constraints. The approach is applicable to broader mission classes, such as those that operate in different orbits or that survey the Earth. First, the instrument and spacecraft configuration is optimized to enable visibility of the targeted observations throughout the year. Second, a constraint-based high-level strategy is presented for scheduling throughout the year subject to a simplified subset of the constraints. Third, a heuristic-based scheduling algorithm is developed to assign the all-sky observations over short planning horizons. The constraint-based approach guarantees solution feasibility. The approach is applied to the proposed SPHEREx mission, which includes coverage of the North and South Celestial Poles, Galactic plane, and a uniform coverage all-sky survey, and the ability to achieve science requirements demonstrated and visualized. Visualizations demonstrate the how the all-sky survey achieves its objectives.
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the core instrument on the Russian Spektrum-Roentgen-Gamma (SRG) mission which is scheduled for launch in late 2012. eROSITA is fully approved and funded by the German Space Agency DLR and the Max-Planck-Society. The design driving science is the detection of 50 - 100 thousands Clusters of Galaxies up to redshift z ~ 1.3 in order to study the large scale structure in the Universe and test cosmological models, especially Dark Energy. This will be accomplished by an all-sky survey lasting for four years plus a phase of pointed observations. eROSITA consists of seven Wolter-I telescope modules, each equipped with 54 Wolter-I shells having an outer diameter of 360 mm. This would provide and effective area at 1.5 keV of ~ 1500 cm2 and an on axis PSF HEW of 15 which would provide an effective angular resolution of 25-30. In the focus of each mirror module, a fast frame-store pn-CCD will provide a field of view of 1 deg in diameter for an active FOV of ~ 0.83 deg^2. At the time of writing the instrument development is currently in phase C/D.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا