ﻻ يوجد ملخص باللغة العربية
Current social networks are of extremely large-scale generating tremendous information flows at every moment. How information diffuse over social networks has attracted much attention from both industry and academics. Most of the existing works on information diffusion analysis are based on machine learning methods focusing on social network structure analysis and empirical data mining. However, the dynamics of information diffusion, which are heavily influenced by network users decisions, actions and their socio-economic interactions, is generally ignored by most of existing works. In this paper, we propose an evolutionary game theoretic framework to model the dynamic information diffusion process in social networks. Specifically, we derive the information diffusion dynamics in complete networks, uniform degree and non-uniform degree networks, with the highlight of two special networks, ErdH{o}s-Renyi random network and the Barabasi-Albert scale-free network. We find that the dynamics of information diffusion over these three kinds of networks are scale-free and the same with each other when the network scale is sufficiently large. To verify our theoretical analysis, we perform simulations for the information diffusion over synthetic networks and real-world Facebook networks. Moreover, we also conduct experiment on Twitter hashtags dataset, which shows that the proposed game theoretic model can well fit and predict the information diffusion over real social networks.
Social networks have become ubiquitous in our daily life, as such it has attracted great research interests recently. A key challenge is that it is of extremely large-scale with tremendous information flow, creating the phenomenon of Big Data. Under
In this big data era, more and more social activities are digitized thereby becoming traceable, and thus the studies of social networks attract increasing attention from academia. It is widely believed that social networks play important role in the
This paper explains the design of a social network analysis framework, developed under DARPAs SocialSim program, with novel architecture that models human emotional, cognitive and social factors. Our framework is both theory and data-driven, and util
We propose a stochastic model for the diffusion of topics entering a social network modeled by a Watts-Strogatz graph. Our model sets into play an implicit competition between these topics as they vie for the attention of users in the network. The dy
Social networks play a fundamental role in the diffusion of information. However, there are two different ways of how information reaches a person in a network. Information reaches us through connections in our social networks, as well as through the