ﻻ يوجد ملخص باللغة العربية
Social networks play a fundamental role in the diffusion of information. However, there are two different ways of how information reaches a person in a network. Information reaches us through connections in our social networks, as well as through the influence of external out-of-network sources, like the mainstream media. While most present models of information adoption in networks assume information only passes from a node to node via the edges of the underlying network, the recent availability of massive online social media data allows us to study this process in more detail. We present a model in which information can reach a node via the links of the social network or through the influence of external sources. We then develop an efficient model parameter fitting technique and apply the model to the emergence of URL mentions in the Twitter network. Using a complete one month trace of Twitter we study how information reaches the nodes of the network. We quantify the external influences over time and describe how these influences affect the information adoption. We discover that the information tends to jump across the network, which can only be explained as an effect of an unobservable external influence on the network. We find that only about 71% of the information volume in Twitter can be attributed to network diffusion, and the remaining 29% is due to external events and factors outside the network.
Current social networks are of extremely large-scale generating tremendous information flows at every moment. How information diffuse over social networks has attracted much attention from both industry and academics. Most of the existing works on in
In this big data era, more and more social activities are digitized thereby becoming traceable, and thus the studies of social networks attract increasing attention from academia. It is widely believed that social networks play important role in the
The full range of activity in a temporal network is captured in its edge activity data -- time series encoding the tie strengths or on-off dynamics of each edge in the network. However, in many practical applications, edge-level data are unavailable,
We propose a stochastic model for the diffusion of topics entering a social network modeled by a Watts-Strogatz graph. Our model sets into play an implicit competition between these topics as they vie for the attention of users in the network. The dy
Influence overlap is a universal phenomenon in influence spreading for social networks. In this paper, we argue that the redundant influence generated by influence overlap cause negative effect for maximizing spreading influence. Firstly, we present